Raman & SEM Group (PD Dr. N. P. Ivleva)

ATER CHEMISTRY Institute of Water Chemistry

Chair of Analytical Chemistry and Water Chemistry TUM School of Natural Sciences, Department of Chemistry **Technical University of Munich**

Field Flow Fractionation

Flow-based Fractionation

Raman Microspectroscopy

Combination of Raman Spectroscopy with Optical Microscopy

•Non-contact & non-destructive Vibrational fingerprint spectra • Spatial resolution in µm-range:

Scanning Electron Microscopy

Field emission SEM with Variable **Pressure and Cryo Options**

 Spatial resolution in nm-range • Elemental composition based on characteristic X-rays (EDX) Analysis of non-conducting, water-containing and sensitive samples

of nm-sized Particles

• Size fractionation based on separation force fields and diffusion properties of particles •Asymmetrical flow field flow fractionation (AF4) • Centrifugal field flow fractionation (CF3)

single-cells/-particles • Chemical 2D & 3D imaging •No interference of water

Analysis of Plastic Particles in Water and Food

- Problem: Missing of established methods for the quantification and identification of small plastic particles in real samples to assess health risks
- Goal: Analysis of water and milk samples down to 0.5 μ m with TUM-ParticleTyper 2 Software. Analysis of nanoplastic particles in real matrixes with online coupling of field flow fractionation (FFF) and Raman microspectroscopy.

Analysis of Nanoplastic Particles

- Online coupling of field flow fractionation (FFF) and Raman microspectroscopy for separation and chemical identification of particles (<5 μ m)
- Optical trapping of particles in a flow cell enables acquisition of Raman spectra
- Optimization for real (environmental) samples
- Quantification of nanoplastics using Nanoparticle Tracking Analysis (NTA)
- Morphological characterization using SEM

Contact: ch.Maximilian.Huber@tum.de

Microplastic Particles in Alpine Region

Problem: Despite significant laboratory advancements, a gap remains in practical and commercial applications for analysis of micro/nanoplastics

- Aim: Establishing and advancing reliable analytical tools and methods for precise measurement and surveillance of micro/nanoplastics in the environment
- Workflow: I. Sample Collection and Preparation 2. Laboratory Analysis and Data Evaluation
 - 3. Knowledge Transfer to Local Industry

and Authorities

Contact: Marcel.Klotz@tum.de

Biodegradability of Microplastic Particles

- Method development to monitor conversion of microplastics into final degradation products (CO_2 , H_2O and microbial biomass)
- Trace heavier stable isotopes from labelled polymer into microbial biomass with Stable Isotope Raman Microspectroscopy

Aerobic microbial degradation:

biomass polymer

Mean Raman spectra of 50 S. koreensis cells incubated with different ratios of D_2O as reference spectra for deuterated cells.

SERS-analysis of filmic contaminations

• Problem: Residue of organic substances, e.g. lubricants, on workpieces can interfere with the technical cleanliness by leading to the arise of weld spatter or reduced adhesion ability

Nondestructive analysis of adhesives

Replacement of destructive lap-shear test due to high cost and low sustainability

- Tracking of polymerisation process via Raman and IR spectroscopy under varying environmental conditions
- Combination of spectroscopic data with destructive analysis to develop

• Aim: Establishment of an analytical method based on surface-enhanced Raman spectroscopy (SERS) for the sensitive detection and identification of thin filmic contaminants

prediction models for the strength of adhesives

Contact: Jannis.Gehrlein@bmw.de

Contact:

PD Dr. Natalia P. Ivleva (Head of Raman & SEM Group) E-Mail: Natalia.lvleva@tum.de Tel.: +49 (0) 89 289 54 507 Office: CH36212; Labs: CH 32213 & 32214 Lichtenbergstraße 4, D-85748 Garching

More information on our team, research topics, equipment and publications at https://www.ch.tum.de/hydrochemistry/raman-sem

Supported by: Bundesministerium für Bildung Bundesministerium für Wirtschaft und Forschung und Klimaschutz **DFG** Forschungsgemeinschaft

German Research Foundation