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“Everything in Life is Vibration” 

Albert Einstein 
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1. Introduction 

Raman microspectroscopy (RM) has been recognized as a powerful analytical tool in 

science and industry. RM is a nondestructive analytical technique which is based on 

the effect of inelastic light scattering by molecules, providing characteristic vibrational 

fingerprint spectra with the spatial and depth resolution of a confocal optical 

microscope. The intensity of the Raman signal is directly proportional to the 

concentration of the analyte. The RM analysis requires no or limited sample 

preparation and can be performed in situ and in vivo without interference of water. 

However, the potential of this technique for the identification and structural 

characterization of different (environmental) matrices/systems, ranging from biofilms, 

microplastic and nanoplastic particles in the environment and food to atmospheric 

aerosol particles and (bio)diesel soot has not yet been systematically explored. 

Furthermore, RM can open possibilities for the nondestructive and quantitative 

analysis of stable isotope tracer incorporation in (in)organic and (micro)biological 

samples. Additionally, the sensitivity of the technique can be significantly improved (by 

a factor of 103 – 106) by employing the surface-enhanced Raman scattering (SERS) 

effect, e.g. for studies of microorganisms and biofilms. 

In this work, new application fields for Raman microspectroscopy will be presented. 

The feasibility and limitations of the method will be discussed, with the focus on the 

analysis of soot, microplastic and nanoplastic particles as well as microorganisms and 

biofilms. RM has been shown to be an efficient technique for the characterization of 

the nanostructure of combustion aerosol particles, and hence is suited for the 

prediction of the structure-related reactivity of e.g., (bio)diesel soot samples. Another 

anthropogenic pollutant – microplastics and nanoplastics – has been found in the 

environment and food, but the degree of contamination remains uncertain. The further 

development of (automated) RM-based analysis can enable the reliable quantification 

of plastic particles down to 1 μm and even below. Furthermore, RM and SERS in 

combination with the stable isotope approach are shown to be an emerging tool for the 

nondestructive 2D and 3D characterization of the molecular and isotopic composition 

of microorganisms on the single-cell level, which can enable in situ investigations of 

ecophysiology and metabolic functions of microbial communities. 
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2. Raman microspectroscopy (RM) for the characterization of soot 

Carbonaceous aerosols, or soot particles, result from incomplete combustion of fossil 

fuels or biomass burning. Soot is of high importance for the climate as well as the 

environment and human health, as it interacts with clouds or the earth’s radiation, 

causes respiratory diseases, or transports and converts substances [1-3]. Soot 

consists mostly of carbon and is composed of agglomerated primary particles with 

diameters of 10 – 50 nm that comprise nanocrystalline (sp2-bonded graphite like 

carbon) and amorphous (sp3- and sp2-bonded carbon) domains. The amorphous 

domains are disordered mixtures of polycyclic aromatic hydrocarbons (PAHs) and 

other (in)organic components [1,4]. 

Soot which is present in diesel engine exhaust is particularly important, as it is 

classified to be carcinogenic to humans (Group 1) by the World Health Organization 

(WHO) [5]. Despite continuous optimization, combustion engines cannot avoid 

inhomogeneities in the internal combustion chamber, leading to the formation of soot 

nanoparticles (NP) [1]. Therefore, continuously regenerating traps (CRT) or diesel 

particulate filters (DPF) are applied in order to remove soot particles from diesel engine 

exhaust. These systems, however, have to be continuously (CRT) or periodically 

(DPF) regenerated by oxidation and gasification of the deposited soot. The behavior 

of this regeneration step is strongly influenced by the structure and reactivity of the 

deposited soot particles [1,6-8]. Furthermore, depending on the combustion conditions, 

fuel, and lubricant composition, the emitted exhaust contains particles of complex 

composition: soot particles can be internally or externally mixed with minerals and 

coated with adsorbed semi-volatile compounds or sulfuric acid [1,9]. 

Despite the enormous effort made in developing electromobility, the predominance of 

combustion engines will remain for at least several decades [1]. Therefore, the 

comprehensive characterization of soot structure and reactivity is essential to meet 

future low-emission standards [1] and also to understand impact of soot on the 

environment [1-3]. 

The reactivity of soot is usually determined by temperature-programmed oxidation 

(TPO). The emitted carbon oxides (CO2 and CO) are quantified by Fourier transform 

infrared (FT-IR) spectroscopy or mass spectrometry [1,6-8]. To investigate the soot 

structure, high-resolution transmission electron microscopy (HRTEM) is usually 

applied [7,10]. It has been shown that differences in the oxidation behavior of soot are 
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associated with different nanostructures [10]. However, TPO and HRTEM 

measurements are too demanding for routine analysis. Therefore, we explored the 

potential of Raman spectroscopy for the characterization of soot structure and 

reactivity. 

Raman spectroscopy was first applied for the characterization of graphite-like carbon 

in soot by Rosen and Novakov in 1977 [11]. Since then, many studies have reported 

and discussed the correlation of Raman spectroscopic parameters with the structure 

of soot and related carbonaceous materials (see reviews [1,4] and references therein, 

as well as [3] (PI). 

Figure 1 shows Raman spectra of soot and related carbonaceous materials. For highly 

ordered pyrolytic graphite (HOPG), only one strong sharp peak around 1580 cm-1 (G 

– “Graphite” peak) can be observed. However, already for graphite powder the Raman 

spectrum exhibits two peaks – a strong sharp G peak around 1580 cm-1 and a weak 

peak around 1350 cm-1 (D – “Defect” or “Disorder” peak). Spectra of soot samples (and 

humic-like substances) consist of two strong overlapping G and D peaks. In order to 

get more detailed information on Raman spectroscopic parameters, different fitting 

procedures can be applied [12]. Figure 2 illustrates the commonly used five-band fitting 

procedure proposed by Sadezky et al. in 2005 [13]. 

 

Figure 1: Main vibrational modes in Raman spectra of carbonaceous materials (left) and spectra of 

different soot samples and related carbonaceous materials (right): highly ordered pyrolytic graphite 

(HOPG), graphite powder, Printex XE 2 industrial soot, SRM 1650 diesel soot, light-duty diesel vehicle 

(LDV) soot, spark discharge (GfG) soot and humic acids. The spectra are offset for clarity. Inserts: 

HRTEM images of graphite powder and GfG soot. Adopted from Ivleva et al. [12] and Knauer et al. [7]. 
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Figure 2: Raman spectrum of untreated EURO VI soot with five-band fitting procedure according to 

Sadezky et al. [13]. Adopted from Knauer et al. [7]. 

Obviously, Raman spectroscopic parameters – such as peak positions, widths, and 

intensity ratios – differ significantly for different soot samples and related carbonaceous 

materials, and therefore can be applied for structural characterization. Furthermore, 

since the oxidation behavior of soot depends on the nanostructure of soot, Raman 

spectroscopy has a potential for the prediction of soot reactivity, which was first 

demonstrated in 2007 by Ivleva et al. [6]. As shown in Figure 3, the differences in the 

soot reactivity determined by temperature-programmed oxidation (increase from the 

least reactive graphite powder through EURO IV and EURO VI soot to the most 

reactive GfG soot) are in a very good agreement with the differences in soot 

nanostructure measured by Raman spectroscopy (increase in the D1 width from 

graphite powder through EURO IV and EURO VI soot to GfG soot which exhibits the 

highest degree of disorder). 

 

 

Figure 3: Mass conversion versus temperature by oxidation up to 773 K, heating rate 5 K/min (left). 

Changes in full width at half-maximum (FWHM, cm-1) of D1 band for GfG soot, EURO VI soot, EURO 

IV soot, and graphite powder during oxidation versus mass conversion (right). Adopted from Knauer et 

al. [7]. 
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Generally, the five-band fitting procedure can be successfully used for the analysis of 

the structure of a large variety of different diesel soot samples and related 

carbonaceous materials [1,7]. However, for some soot samples, unusual signals in the 

D4 area (spectral region around 1200 cm-1) caused by organic carbon and/or inorganic 

impurities were observed, making this fitting procedure inapplicable. This issue can be 

resolved by applying multiwavelength Raman microspectroscopy [8]. This method is 

based on the dispersive character of the carbon D mode in Raman spectra (i.e., red 

shift and increase in intensity at higher excitation wavelength, 0). For soot 

nanoparticles, the classic rule of the invariance of Raman shift at different 0 is not 

valid because of the broken symmetry. This leads to a so-called double-resonant 

Raman process, which (for a given laser energy and phonon branch) selectively 

enhances a particular phonon wave vector and phonon frequency [14]. 

 

Figure 4: Raman spectra of (a) HOPG, (b) graphite powder, (c) DS 12, and (d) GfG soot (sorted by 

increasing structural disorder) measured at different excitation wavelengths (0;1 = 532 nm, 

0;2 = 633 nm, 0;3 = 785 nm). The grayish areas are the result of the subtraction of the 0;1 spectra 

from the 0;3 spectra for dark gray and the 0;2 spectra for light gray, resp. From Schmid et al. [8]. 

The applicability of the multiwavelength approach was proven by investigating various 

diesel soot samples and related carbonaceous materials at different 0 (785 nm, 

633 nm, 532 nm and 514 nm). As shown in Figure 4, only HOPG sample exhibits the 

invariance of the Raman shift at different 0 (G peak at 1580 cm-1). However, already 

for graphite powder and for all studied soot samples the dispersive character of the D 

peak can clearly be observed. Additionally, the changes become more pronounced 
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with increasing nanostructural disorder. Furthermore, good correlation between these 

Raman values and the corresponding TPO data was found (Figure 5). 

 

Figure 5: TPO results (maximum emission temperature) and the reactivity index (GfG soot and graphite 

powder represent higher and lower reactivity limits, resp.) versus the difference integral for various soot 

samples and carbonaceous materials. From Schmid et al. [8]. 

The production of biodiesel fuels has been increasing continuously in the last decade, 

since the EU demands the use of renewable energy sources. Hence, the information 

on the structure and reactivity of biodiesel soot is of high interest. However, very 

contradictory results can be found in the literature. Therefore, we have studied the 

reactivity of soot produced by a diesel engine operated with fuels of different biodiesel 

content [15] (PII). TPO results indicate an increasing reactivity with increasing biofuel 

ratio. This implies that soot generated with 100% biofuel (consisting of rapeseed oil 

methyl ester) is more reactive than soot generated with commercial gasoline fuel 

containing up to 7% biodiesel, while soot from fossil fuel is even less reactive. 

Surprisingly, RM analysis yields very similar spectra for the samples, indicating that all 

investigated soot samples possess a similar graphitic nanostructure [15] (PII). 

However, we found that the reactivity of biodiesel soot increases with decreasing size 

of soot agglomerates as well as with increasing content of Fe, Zn, and Cu in the soot, 

which was determined by inductively coupled plasma mass spectrometry (ICP-MS). 

Thus, the soot reactivity is not determined by a single parameter, but by a combination 

of many soot properties, such as nanostructure, particle size and/or inorganic 

components (impurities or additives) [16-18]. 
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The potential of Raman microspectroscopy was further tested for the analysis of soot 

with different organic carbon (OC) content. Carbonaceous aerosols are often 

characterized by black carbon (BC), elemental carbon (EC) and/or OC content. The 

term BC is linked with the strong absorption properties of aggregates of small carbon 

spheres with predominantly graphite-like nanostructure. The term BC is often used 

equally with elemental carbon (EC) [19], although BC and EC are operationally 

defined. EC is a carbonaceous fraction that is inert and nonvolatile in the atmosphere 

[20]. EC and OC [21] are determined operationally by thermal-optical reflectance and 

thermal-optical transmission techniques [19,22]. But describing a soot composition by 

its EC/OC content may be afflicted by errors and not comparative with the findings of 

others as EC and OC which are defined by the used method. Hence, the separation of 

EC and OC can be ambiguous [19,22]. Thus, the information on the relation between 

OC content and soot properties, including the structure and reactivity, is highly desired. 
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Figure 6: Raman spectra of untreated soot samples with different OC content (a). Length’s distributions 
of soot nanocrystallites from HRTEM images (b). Raman spectra without baseline correction and 

normalization of the sample with 87% OC (c). Evolution of the Raman spectra of the soot sample with 

87% OC content with increasing temperature (d). From Ess et al. [3] (PI). 

We have applied RM in combination with HRTEM and FT-IR spectroscopy for the 

characterization of soot with different organic carbon (OC) content (4%, 47% and 87%) 

[3] (PI). The FT-IR analysis of the samples revealed their organic composition by 

showing aromatic compounds for the samples with 47% and 87% OC additional to the 

aliphatic compounds and ketones/aldehydes present also in the sample with 4% OC. 

According to the RM data and in agreement with HRTEM analysis, the nanostructural 

order was high for the soot with 4% of OC and low for the soot with 87% of OC (Figure 
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6a,b). Furthermore, we have performed in situ RM analysis during the soot oxidation 

at temperatures up to 600 °C in air using a heating stage. The (fluorescent) organic 

components were evaporated/transformed or oxidized with increasing temperature (up 

to 500 °C), and the soot nanostructure changed significantly (Figure 6c,d). At 600 °C 

the chemical heterogeneity vanished and the structural order increased, since the 

organic components as well as amorphous carbon were oxidized by that time [3] (PI). 

Thus, significant differences in the structure and reactivity of soot with different organic 

carbon (OC) content were revealed. These results can help in understanding the 

relation between the OC content in the soot and its structure, reactivity and impact on 

the environment. 

Thus, RM provides information on the soot nanostructure and allows for the prediction 

of soot structure-related reactivity. Hence, it can be applied together with other 

methods, e.g., HRTEM, FT-IR and TPO for the comprehensive characterization of 

carbonaceous aerosols in order to get better understanding of their properties and 

impact on the environment and human health. Furthermore, RM is an efficient tool for 

the structural characterization of graphene nanoarchitectures (e.g., produced by photo-

induced C-C reactions in insulators [23]) or for the determination of graphene doping 

(induced, e.g., by organic solid-solid wetting deposition) [24] (PIII). 
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3. Analysis of microplastics and nanoplastics by RM-based methods 

Synthetic polymer (usually termed plastic) materials have become an inherent part of 

our everyday life. Being lightweight, durable and corrosion-resistant, they offer 

remarkable technological and medical benefits. Plastic production grows, reaching 

64.4 million metric tons (Mt) in Europe and 348 Mt globally in 2017 [25]. Unfortunately, 

only 73% of plastic is recovered through recycling (42%) and energy recovery (31%). 

The remaining 27% of the plastic waste are transported to landfills [25], and a part of 

it is carried away by winds. Along with carelessly discharged materials, plastic waste 

continuously enters the environment. Despite the general durability of synthetic 

polymers, a combination of mechanical abrasion, UV irradiation, and (micro)biological 

degradation in the environment causes the formation of tiny plastic fragments – 

secondary microplastic (MP). Apart from these, the so-called primary MP particles are 

designed and produced on purpose (e.g., virgin plastic pellets or MP for industrial 

cleaners and personal care products) and can also enter the environment by different 

pathways. Therefore, the contamination of the environment with plastic, and especially 

with MP is of increasing scientific and public concern. MP is defined as synthetic 

polymer particles (including fragments, spheres, films and fibers) in the size range of 

1 µm – 1 mm [26,27]. Plastic particles with sizes between 1 mm – 5 mm are called 

large MP [27]. Recently, it has been proposed that also smaller plastic particles, the so 

called submicro- (100 nm – 1 µm) and nanoplastic (<100 nm) are discharged into the 

environment or/and are formed from larger (micro)plastic debris [28-30]. Most studies 

on the chemical composition of MP in aquatic systems have reported polyethylene 

(PE), polypropylene (PP), polystyrene (PS), and, less frequently, polyamide (PA), 

polyvinyl chloride (PVC) and polymethyl methacrylate (PMMA) [31] (PIV). 

Undoubtedly, (micro)plastic as global anthropogenic contaminant represents a big 

aesthetic problem. It is also assumed that MP could have negative impact on public 

health and on the environment. Since small-size MP can be ingested by different 

aquatic organisms, MP could enter the food chain and accumulate at higher trophic 

levels [32]. In particular, the negative impact of plastic debris on living organisms could 

be related to the leaching of monomers and additives, some of which have been proven 

to be toxic, carcinogenic, or endocrine-disrupting [32]. Furthermore, due to the large 

surface-to-volume ratio and the nature of the MP surface, it can enrich persistent 

organic pollutants (POPs, for example, polychlorinated biphenyls (PCBs), polycyclic 
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aromatic hydrocarbons (PAHs)), or toxic metals from aquatic environments [33,34]. In 

addition, it has been shown that MP particles can act as a vector or carrier (for the 

ecosystem) of foreign species and potentially pathogenic microorganisms [35,36]. 

However, the reported results on the MP impacts are very contradictory, ranging from 

detrimental (including lethal) through no-effects up to detoxification (when the initial 

concentration of pollutants in organisms was higher than in ingested MP) [37]. It is 

noteworthy that, in most experiments, very high MP concentrations were used. 

Therefore, it is important to investigate the effects of MP under environmentally 

relevant conditions [31] (PIV). 

However, the degree of MP contamination of the environment remains uncertain. 

Depending on sampling, processing, and especially identification methods, reported 

values for number concentrations span ten orders of magnitude (10-2 – 108 items/m3 

across individual samples and water types [31,38]. Therefore, prominent efforts are 

being undertaken in Germany [39], Europe [40] and worldwide to improve and 

harmonize methods for representative sampling and sample preparation, identification 

and quantification of MP in different environmental matrices. 

 

3.1 Identification and quantification of microplastics 

The identification and quantification represent the crucial step in MP analysis [31] 

(PIV), [41]. The commonly applied visual sorting can lead to a high level of false 

(positive and/or negative) results (up to 70% [33]), especially for particles <500 µm 

(e.g. quartz particles are frequently mistaken for MP). Detailed information on the 

polymer type and additives of MP can be achieved by thermoanalytical methods – 

pyrolysis gas chromatography mass spectrometry (Pyr-GC-MS) and thermo-extraction 

and desorption coupled with gas chromatography mass spectrometry (TED-GC-MS) 

[41,42]. For example, TED-GC-MS can provide valuable data on the mass fraction of 

different polymer types in environmental samples [41]. However, since bulk samples 

are measured, information on the particle size distribution is lost. In contrast, 

spectroscopic methods – attenuated total reflection (ATR)- Fourier-transform infrared 

(FT-IR) spectroscopy, micro-FT-IR spectroscopy and Raman microspectroscopy (RM) 

are appropriate for the analysis of single particles [31] (PIV), [41]. While ATR-FT-IR is 

applied for the detection of MP particles larger than 500 µm, micro-FT-IR enables the 
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(automated) detection of particles down to 10 – 20 µm [43-45]. As shown in Figure 7, 

RM is suitable for the analysis of MP in the entire size range (1 µm – 5 mm) [46-49], 

[50] (PV), [51] (PVI). Figure 8 shows examples for Raman spectra of common 

polymers. 

 
Figure 7: Mass to diameter correlation of spherical MP particles with a density of 1 g/cm3 (dark blue 

line). Analytical range of TED-GC-MS (gray) and Pyr-GC-MS (dark blue) for PE, as the most commonly 

found MP. As well, the limit for focal plane array detector (FPA)-FT-IR (light blue) leaving the niche for 

Raman microspectroscopy (white). Points indicate smallest reported MP. From Anger & von der Esch 

et al. [51] (PVI). 
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Figure 8: Raman spectra of relevant polymers. “Fingerprint” region and region for C-H stretching modes 

of alkyls, alkenes and aromatic protons are highlighted. From Anger & von der Esch et al. [51] (PVI). 

Although RM is very efficient for the identification of synthetic polymers, the analysis 

of environmental samples can be hampered by the interference of fluorescence from 

(micro)biological, organic (e.g. humic substances), and inorganic (e.g., clay minerals) 

contaminations. Therefore, the samples should undergo purification before Raman 

analysis. Additionally, the choice of appropriate acquisition parameters (laser 

wavelength, laser power, photobleaching, measurement time, magnification of 

objective lens, confocal mode) is important to circumvent the problem of strong 

fluorescence background [31] (PIV). 

We have reported the first investigations (in cooperation with Prof. Dr. C. Laforsch, 

University Bayreuth) on the microplastic contamination of freshwater ecosystems in 

Europe (the subalpine Lake Garda, Italy, was chosen as example) in 2013. We applied 

RM for the analysis and showed that these systems act, at least temporarily, as sinks 

for plastic particles. In samples from beach sediments of Lake Garda we found 

primarily low density polymers, namely PS (45.6%), PE (43.1%) and PP (9.8%). 

However, in the size class of very small microplastic particles (9 – 500 μm), also PA 

and PVC were identified [47]. In a follow-up study [50] (PV), we have focused on a 

qualitative and quantitative RM analysis of microparticles of different size classes from 

sediment samples in Lake Garda. For the separation of plastic particles from sediment 
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we used the Munich Plastic Sediment Separator (MPSS) [46] which was developed (in 

cooperation with Prof. Dr. C. Laforsch, University of Bayreuth) and built at our institute. 

In the sediment samples we identified about 600 microplastic particles with a diameter 

down to 4 µm. Apart from plastic particles, a large number of pigmented (non)plastic 

particles were detected. ICP-MS analysis showed that pigmented particles can contain 

large amounts of (toxic) heavy metals. The number of these particles (Figure 9) 

increases with decreasing size, which suggest that even smaller pigment particles 

might be present (down to the nm-range). 

 

Figure 9: Size distribution of the particles from Lake Garda beach sediment. For plastic particles the 

maximum is located at around 130 µm. The amount of paint particles increases with a decrease in size. 

This is highly pronounced in the size class below 50 µm. From Imhof et al. [50] (PV) 

Even though RM has greatly advanced in recent years, to become a useful tool for the 

detection of MP in the environment, there is a room for significant improvement and 

development of this technique. Especially, the MP particles <20 µm provide a niche for 

RM [51] (PVI). The most urgent challenges are to establish representative 

measurements and to automate the procedure. However, how many particles need to 

be analyzed to get a statistically meaningful result? In order to answer this question, 

we have suggested a random sampling approach – simple random sample of units 

selected without replacement (srswor). The srswor is an unbiased sub sampling 

technique which helps us to determine the number of particles needed for the analysis. 

It also acts as a virtual mixing, so that aggregation of particles similar physical 
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properties within the sample does not lead to a pronounced grouping and segregation 

error the analysis. Depending on a total number of particles on the filter, an estimated 

MP fraction and acceptable margin of error. Our calculations show that for, e.g., a filter 

with 106 particles, MP fraction of 5% and the margin of error of 10%, the analysis of 

around 5000 particles will be sufficient. It is not necessary to analyze all particles on 

the filter in order to obtain statistically reliable results and more importantly there is a 

limit, where measuring more particles will lead to significantly higher measurement 

time, but the margin of error will not significantly improve. However, even if the number 

of particles which need to be measured is reduced down to several thousands, it is 

very difficult and extremely time consuming to perform such analysis manually. 

Therefore, automation of the entire procedure is required, including i) recognition and 

localization of particles deposited on a filter, ii) their morphological characterization 

(size/size distribution and shape), iii) calculation of the number and random selection 

of particles that need to be measured, iv) their chemical characterization by RM, and 

v) spectral identification of particles and summary the results. Furthermore, it is 

important to develop advanced automated particle recognition and characterization 

which are appropriate for all MP shapes (spheres, fragments and fibers) without 

miscalculation of particle sizes and size distributions. Altogether, this will enable 

morphological and chemical characterization of microplastic particles and fibers 

measured by RM (and, additionally, morphological characterization of non-microplastic 

particles and fibers recognized on the filter). Although some commercial programs for 

one or several steps are available, none of them is currently suitable and validated for 

this five-step MP analysis. Therefore, we are working on our own automated 

procedure. For the particle recognition and morphological characterization (steps i and 

ii) we have already implemented Otsu's algorithm (which is an automatic thresholding 

algorithm that splits pixels in two groups (bright and dark) by minimizing the between-

class variance of the two groups) [52]. Based on the already quite successful 

characterization of microplastic particles with the first program, a second more 

advanced characterization tool (TUM-ParticleTyper, TUM-ParTy) is in preparation. 

TUM-ParTy features the localization of particles visualized by optical, fluorescence, as 

well as SEM analysis, which makes the program suitable for various MP detection 

protocols. Furthermore, this program is equipped with an image calibration tool, which 

enables users to automatically find a suitable parametrization for new samples and 

new device settings. By analyzing a new set of images with the optimal 
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parametrization, the detection limit and localization error can be estimated [von der 

Esch & Kohles et al., in preparation]. Statistical sample size reduction and automation 

of the MP detection, identification and quantification is expected to significantly 

accelerate the overall analysis, leading to a higher sample throughput and, 

simultaneously, providing high analytical accuracy for MP analysis. 

RM can be applied not only for the analysis of MP on the filter, but is also well suited 

for the 2D and 3D visualization of MP in biota samples, e.g. of MP incorporated in 

tissues or ingested by aquatic organisms (Figure 10). Especially the analysis of 

particles in the lower µm-range is of high importance for the assessment of 

environmental risks associated with MP (e.g., because it can be translocated in 

tissues). 

a) 

  

b)  

    

c) 

 

 

d) 

 

Figure 10: Microscopic image of Daphnia magna fed with PVC (a), corresponding Raman spectra (b) 

and 3D Raman images (c and d; magenta: PVC particles) of the marked part in the microscopic image 

(sample preparation by Dr. H. K. Imhof, analysis by P. M. Anger). 
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3.2 Detection of plastic particles smaller than 1 µm 

Recently, questions concerning even smaller particles, so-called nanoplastics, have 

emerged and became of pressing interest, especially since they have been detected 

in facial scrubs [53]  and in marine surface waters [30]. Often, plastic particles below 

1 µm are called nanoplastics. However, since particles <100 nm are already defined 

as nanoparticles by the International Union for Pure and Applied Chemistry (IUPAC) 

and the International Organization for Standardization (ISO), the particles in the size 

range 100 nm – 1 µm can be assigned to subµ-plastics [26,31].The topic of subµ-

plastics and nanoplastics, thereby, creates a cross-section with nanoparticle science, 

since nanoplastic particles are in principle polymeric nanoparticles [54]. It is, however, 

well placed in the field of environmental plastic analysis, since it is part of the whole 

plastic contamination problem [55] (PVII). It is worth to note that the mass of the 

particle decreases with the third power of its diameter d. Therefore, one 100 µm plastic 

particle (m = 1 mg) is equivalent to a thousand of 10 µm, a million of 1 µm, a billion of 

100 nm and a trillion of 10 nm particles. Thus, subµ- and nanoplastic can constitute 

high particle numbers but, at the same time, low masses in a sample and, therefore, 

analytical techniques have to provide low particle size detection limits and/or low LODs 

in terms of mass to detect these plastic particles. 

Surely, by the analysis of the plastic particles smaller than 1 µm we are facing a 

methodological gap (Figure 11). When entering the nanometer size range, a new 

approach in the analytical methodology must be taken. This concerns specific 

characteristics, such as the particle size distribution (PSD) or morphology and the 

chemical identity, for which techniques that detect particles in the nanometer range will 

be needed. In addition, an appropriate sample treatment, especially, a 

preconcentration and also a separation step to properly isolate the particles, will be an 

essential part of the required protocol [55] (PVII). 
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Figure 11: The analysis of MP is established for particles down to 1 µm. Below, there is a 

methodological gap. From Schwaferts et al. [55] (PVII). 

The established methods for MP analysis, however, have a potential to be adapted for 

the analysis of subµ- and nanoplastic particles, by combining them to other techniques. 

Very promising is a combination of Raman microspectroscopy and scanning electron 

microscopy (SEM). Here, the RM can provide diffraction-limited (down to around 

300 nm) chemical information on subµ-plastic particles at the single-particle level, 

while SEM can be applied to verify the size of analyzed particles and to get further 

information on their morphological characteristics. We have found that the combination 

of RM and SEM analysis enables reliable characterization of PS particles down to 

500 nm (Figure 12) and even 250 nm [Schwaferts et al., in preparation]. 
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Figure 12: Optical image, Raman microspectroscopic image and Raman spectrum as well as SEM 

image of 500 nm PS particles on Al-coated slide. Sample preparation and RM-SEM analysis by C. 

Schwaferts. 

Although the combination of RM and SEM yields very valuable information, this 

approach only allows us to analyze individual particles and is very time consuming. 

Therefore, alternatively, RM analysis of bulk samples can be applied for different size 

fractions of subµ-particles, e.g., by fractionation methods such as asymmetrical flow 

field-flow fractionation (AF4) and centrifugal field-flow fractionation (CF3). These 

methods can be extended by using UV-visible absorption and multi-angle light 

scattering (MALS) detectors [56-58] for the characterization of concentration and size 

distribution of particles, respectively. We have already combined these fractionation 

methods for the particle separation and size characterization with RM for offline and 

also for online chemical identification of subµ-particles. For the online analysis, a 

Raman flow cell has been designed [59] and applied. This cell utilizes 2D optical 

tweezers for particle trapping, in order to increase the efficiency of the Raman analysis. 

Particles of different materials in the size range from 200 nm to 5 µm, with 
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concentrations down to 10 µg/L (e.g., for 600 nm PS particles) can then be identified 

[Schwaferts et al., in preparation]. 

Thus, among the available methods, Raman microspectroscopy is best suited for the 

identification and quantification of different types of plastic and pigment particles down 

to 1 µm and even below. Implementation of the statistical sample-size reduction and 

automation will facilitate an overall faster procedure and higher sample throughput, 

simultaneously providing high analytical accuracy of MP analysis. Additionally, RM can 

be applied not only for the analysis of MP on filters. This method allows for the 

visualization and characterization of microplastic particles in biota samples by 2D and 

3D Raman imaging. Since RM enables the analysis of the particles in the lower µm-

range within tissues samples (or even entire small organisms, e.g., Daphnia magna), 

it can provide valuable data for the assessment of environmental risks associated with 

MP. Furthermore, RM in the combination with SEM yields diffraction-limited (down to 

around 300 nm) chemical information on subµ-plastics on the single-particle level. 

Finally, RM has a potential for a high throughput offline and online chemical 

characterization of subµ-plastic particles by the combination with fractionation 

techniques (e.g., AF4 and CF3) and, hence, can enable the reliable analysis of subµ-

plastics and nanoplastics from real samples in the future. 
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4. Stable isotope Raman microspectroscopy (SIRM) in analytical chemistry 

Stable isotope-based analytical methods gain increasing relevance in different 

scientific fields. Although mass spectrometry-based (MS) methods enable sensitive 

analysis of bulk samples (e.g., isotope ratio mass spectrometry, IRMS) [60,61] or 

provide a spatial resolution down to 50 nm (e.g., nanoscale secondary ion mass 

spectrometry, NanoSIMS) [62,63], these methods are destructive and require time-

consuming sample preparation. Here, a combination of Raman microspectroscopy 

(RM) with the stable isotope approach – stable isotope Raman microspectroscopy 

(SIRM) – can extend the capabilities of the well-established techniques with a 

nondestructive, quantitative and spatially-resolved analysis. SIRM provides 

characteristic fingerprint spectra of samples with the spatial resolution of a confocal 

optical microscope, containing information on stable isotope-labeled substances and 

the amount of a label (based on red shift of bands of the labeled substances). 

Simultaneously, these spectra deliver information on the chemical composition and 

structure of samples. Furthermore, this method requires no or limited sample 

preparation, and can be performed in situ and in vivo without spectral interference of 

water [64-69], [70] (PVIII). 

4.1 SIRM for quantitative analysis of organic substances 

To put further approaches on a firm basis, in a first step we have performed the analysis 

of stable isotope-labeled reference compounds, in order to reveal the feasibility of the 

SIRM technique for the quantification of isotope ratios and absolute concentrations. To 

this end, 12C/13C-phenylalanine, 12C/13C-glucose and 12C/13C/D-sodium acetate were 

mixed in different proportions to create standards representing different labels of stable 

isotope tracer (e.g., 1 – 99% of 13C). The ratios of the intensities for 13C- and 12C- 

related peaks as well as a multivariate calibration method, called partial least-squares 

(PLS), were used to determine the 13C-content. A more sensitive LOD of 2.8% 13C-

content (for Phe) was calculated for the SIRM approach. Additionally, the minimal 

absolute amount of the 13C-compound detectable in the laser spot was determined. 

With acquisition times of 100 s per spectra, 0.148 ± 0.008 and 0.327 ± 0.017 pg 13C-

glucose can be detected for the 532 nm laser (8.4 mW at the sample) and the 633 nm 

laser (3.7 mW at the sample), respectively [71]. 

At the next step, we have examined the potential of SIRM for the evaluation of 

differently enriched 13C-labeled humic acids (HA) as model substances for soil organic 

matter. Using glucose and urea as educts for synthesis, artificial HA with known 

isotopic compositions were produced and analyzed. By performing a controlled burning 

(pregraphitization using 532 nm excitation laser), a suitable analysis method was 

developed to cope with the high fluorescence background. The results were verified 

against IRMS (in cooperation with Prof. M. Elsner, Institute of Groundwater Ecology, 

Helmholtz Zentrum München, now director of IWC-TUM). The limit of quantification 
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was determined as 2.1 × 10−1 13C/Ctot when evaluated from all points of the calibration 

and 3.2 × 10−2 13C/Ctot for a linear correlation up to 0.25 13C/Ctot (Figure 13). 

Complementary, NanoSIMS analysis (in cooperation with Prof. Dr. I. Kögel-Knabner 

and PD Dr. C. W. Müller, Chair of Soil Science, TUM) indicated good qualitative 

agreement, but small-scale heterogeneity within the dry sample material. Our study 

shows that SIRM is well-suited for the analysis of stable isotope-labeled HA. This 

method requires no specific sample preparation and can provide information with a 

spatial resolution in the µm-range [72] (PIX). 

  

Figure 13: Fitted and baseline-corrected Raman spectra of 12C- and 13C-labeled HA with G (graphite) 

and D (defect) peaks at ca. 1600 cm-1 and 1350 cm-1, resp. (left). Linear regression of the relative 

amount of 13C/Ctot (Ctot = total amount of carbon) and Raman shift of G-peak of the fitted spectra for HA 

samples up to 25% of 13C-content. From Wiesheu et al. [72] (PIX) 

4.2 SIRM for the analysis of microorganisms and biofilms 

In environmental chemistry, RM and especially SIRM have a high potential for the 

analysis of microbial communities (biofilms) and their metabolic functions. 

Microorganisms living in diverse natural environments usually form biofilms, where 

cells are embedded in a hydrogel matrix of extracellular polymeric substances (EPS). 

RM was shown to be suited for the characterization of entire biofilms, including 

microbial constituents and EPS matrix [70] (PVIII). Biofilms are essential for global 

biogeochemical cycles and, especially, for the biodegradation of pollutants that are 

related to water quality. Here, SIRM can provide information about metabolic pathways 

and carbon flows together with “whole-organism fingerprints” at the single cell level 
[64-68], [70] (PVIII). 

Raman band shifts in isotope-labeled bacterial cells were first reported by Huang et al. 

in 2004 [64] for Pseudomonas fluorescens grown in media containing different ratios 

of 12C-glucose and 13C-glucose as the sole carbon source. Red-shifts of many different 

Raman peaks were assigned to proteins, lipids and nucleic acids. Furthermore, in 2007 

Huang et al. [65] showed the possibility to combine SIRM with an in situ identification 

method (fluorescent in situ hybridization, FISH), for the simultaneous determination of 
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13C-incorporation into biomass by RM and the identification of cells by FISH. An almost 

linear correlation between the known 13C-content of the cultivated microorganism and 

the phenylalanine (Phe) peak ratio was found (i.e., the ratio of the Phe band at 966 cm-

1 in bacteria grown in 100% 13C-glucose compared to the band of 1003 cm-1 in 12C-

cultivated bacteria). A minimum labeling of only 10% 13C-content was sufficient to 

discriminate between labeled and unlabeled cells. 

 

 
 

     

Figure 14: Raman spectra of N47 cells cultivated with either 12C-napthalene or 13C-naphthalene and the 

characteristic red-shift of the Phe band (left). The four highlighted peaks were assigned to four different 

isotopologues of Phe (with 0, 2, 4 or 6 13C-atoms). Optical microscope and SEM images of single cells 

of strain N47 (right). From Kubryk et al. [71]. 

We have applied SIRM for the analysis of the Deltaproteobacterium strain N47 (a 

strictly anaerobic sulfate-reducer, that degrades naphthalene, an environmental 

pollutant) and showed the applicability of the sharp Phe band as a marker for the 

characterization of: i) the naphthalene degradation process and ii) the incorporation of 

stable isotope-labeled compounds into microbial biomass (Figure 14) [71]. 

4.3 Improvement of SIRM sensitivity by resonance and SERS effects 

One major problem with RM is its limited sensitivity, caused by the low quantum 

efficiency of the Raman effect (typically 10-8 – 10-6). This usually leads to long 

acquisition times, especially for the analysis at the single cell level. Fortunately, there 

are strategies to amplify the Raman signal. One of them is resonance Raman 

scattering. The wavelength of the excitation laser is so that the incident photon energy 

is equal or close to the energy of an electronic transition of an analyte. This results in 

an increase of the Raman scattering intensity by a factor of 102 – 106. The sample must 

contain substances that are resonance Raman active (e.g., a chromophore containing 

molecules such as carotenoids [73], cytochrome c [74], or flavin nucleotides [75]). In 

this context, we have explored the potential of resonance SIRM for the analysis of 

microorganisms containing cytochrome c [71]. A clear differentiation between 13C-

labeled and unlabeled Geobacter metallireducens cells was possible with a laser 

excitation wavelength of 532 nm (4 mW at the sample) and acquisition times as short 

as 1 s. 
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If the application of resonance SIRM for a specific sample is not possible (e.g., due to 

the absence of chromophore containing molecules), surface-enhanced Raman 

scattering (SERS) is an alternative to improve the sensitivity of RM. Raman signals of 

analytes can be significantly enhanced if they are located close to or are attached to 

nanometer-sized metallic structures (Ag or Au). Furthermore, the fluorescence – which 

often hampers RM measurements of organic and (micro)biological samples – can be 

effectively quenched by SERS. Enhancement factors of the Raman signal in the range 

of 103 – 1011 can be achieved, because of electromagnetic (“localized surface plasmon 
resonance”) and chemical (“charge transfer”) enhancement effects [76-80]. 

Furthermore, when Raman analysis with a spatial resolution down to 20 nm is 

desirable, tip-enhanced Raman spectroscopy (TERS) can be applied [81]. The 

distance (d) between the analyte and the SERS-active surface is essential, since the 

SERS intensity (I) decreases dramatically with distance (I ~ d -12) in the case of 

electromagnetic enhancement. Hence, almost no enhancement can be achieved for d 

≥10 nm. The chemical enhancement requires direct contact between the SERS-active 

surface and the analyte. Furthermore, the so-called hot spots can provide extra field 

amplification, resulting in enhancement factors of up to 109 – 1011, and allow single-

molecule detection [78]. But such high amplifications are mostly expected in very 

restricted areas, and hence are hardly reproducible [82]. Therefore, in the SERS 

analysis of bacteria, which started twenty years ago [83], averaged spectra are 

commonly used. However, this would contradict the required approach of analyzing 

single cells, based on stable isotope-induced red-shift(s) of SERS band(s). Hence, 

highly reproducible SERS spectra are necessary prerequisites for successful 

combination of the stable isotope approach with SERS. In this context, the choice of 

an appropriate SERS substrate which provides reproducible SERS spectra of 

microorganisms with good enhancement factors is an important and difficult task. 

The enhancement factor depends on the metal, on the nanoparticle or nanostructure 

size and shape as well as on the excitation and the Raman scattered wavelengths. 

Furthermore, the affinity of different components to Ag or Au surfaces and, hence, the 

associated enhancement is different. This results in the selectivity of SERS analysis. 

Because of different optical properties, different excitation wavelengths are optimal for 

diverse metal nanoparticles or nanostructures; for example, gold plasmons are red-

shifted by about 100 nm compared to silver plasmons, and therefore show a stronger 

excitation in the red and near IR ( >600 nm) [84]. Silver, however, is plasmonically 

more active, and its SERS enhancement outperforms that of gold. Therefore, Ag 

nanoparticles allow ultrasensitive analysis and are used more often than gold (which 

is, however, characterized by better biocompatibility). 



 

30 

The first application of SERS for the in situ analysis of a complex multi-species biofilm 

matrix has been presented by Ivleva et al. in 2008 [85]. Colloidal AgNP produced by 

reduction of silver nitrate with hydroxylamine hydrochloride were applied as the SERS 

medium. Because of good reproducibility and an enhancement factor of up to a 

hundred, it was possible to sensitively characterize different components of the biofilm 

matrix. Follow-up studies [86,87] reported on the feasibility of SERS imaging for 

microbial biofilm analysis, including the detection of different constituents and their 

spatial distribution in a biofilm at the initial growth phase and also in the mature matrix. 

Figure 15: Scheme of the SIRM studies with the focus on the nondestructive quantitative and spatially 

resolved analysis of the incorporation of the stable isotope-labeled compounds into microbial biomass. 

Adopted from Kubryk et al. [71]. 

Our group was the first who demonstrated the feasibility of SERS for the analysis of 

stable isotope-labeled microorganisms on the single-cell level [71]. For this, we have 

applied an in situ AgNP preparation procedure, which has been recently developed at 

our institute [88]. E. coli cultivated with 12C- or 13C-glucose was used as a model 

organism for SERS analysis with a laser wavelength of 633 nm. A reproducible red-

shift of an adenine-related marker band in the SERS spectra for 13C-labeled cells was 

observed. The further research of our group on stable-isotope labeling, using partially 

and fully 13C- and 15N-labeled cells [89], allowed to identify purine bases as the major 

origin of SERS spectra. Recently, Premasiri et al. confirmed this finding, by studying 

several microorganisms with known differences in the metabolic pathway of purine at 

the bulk level (using an Au substrate and 785 nm excitation wavelength) [90]. They 

assigned these bands to purine bases and biochemically relevant derivatives, e.g., 

adenine, guanine, hypoxanthine, xanthine. Figure 15 summarizes SIRM studies with 

the focus on the nondestructive quantitative and spatially resolved analysis of the 

incorporation of the stable isotope-labeled compounds into microbial biomass. 
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Additionally, our recent study indicated that SERS signals of microorganisms are 

strongly influenced by the metabolic activity of the cells [91] (PX). We have found that 

different physiological conditions (e.g., storage or deuterium-labeling) have a 

significant impact on the release of nucleotides and/or their degradation products and, 

hence, on the intensity of SERS signals which they cause. These results suggest that 

SERS in combination with SIRM is a promising approach for the analysis of 

environmental samples (biofilms), which can decipher metabolic activity of 

microorganisms. 

The combination of SIRM with SERS can allow us to perform sensitive, spatially 

resolved analysis of microorganisms in environmental samples. Therefore, we have 

tested the in situ AgNP synthesis as a way to accomplish a 3D detection of bacteria. 

Figure 16 displays the 3D SERS image of an artificial biofilm prepared with unlabelled 

and 13C-labelled E. coli cells embedded into an agarose gel. The distinct signal at 

around 730 cm-1 enables the visualization of bacteria as well as discrimination between 

labelled and unlabelled cells [91] (PX). 

 

Figure 16: 3D SERS image of 12C/13C-labeled E. coli cells embedded into an agarose matrix. Not shifted 

and red-shifted SERS signal are drawn at each grid position in blue and red spheres respectively, the 

size and hue represent the intensity. From Weiss et al. [91] (PX). 

Furthermore, we have applied in situ SERS technique for the sorting of bacterial cells 

by laser tweezer Raman spectroscopy (LTRS, in cooperation with Prof. Dr. M. Wagner 

and M. Palatinszky, Division of Microbial Ecology, Department of Microbiology and 

Ecosystem Science, University of Vienna, Austria). It was possible to trap and analyze 

E. coli cells by SERS at acquisition times as short as 100 ms. The LTRS experiments 

performed with a mixture of unlabeled and fully 13C-labeled bacteria proved that 13C-

isotope incorporation into trapped microbial cells can be detected based on the red-
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shifted SERS signal (shift from 733 cm-1 to 720 cm-1, Figure 17) [91] (PX). Thus, 

trapping and sorting of stable-isotope labeled bacteria can be facilitated by SERS. 

 

 

 

Figure 17: (a) Continuously acquired spectra of AgNP@E. coli agglomerate inside of laser focus. (b) 

Microscopic image during sorting by optical tweezing with AgNP@E. coli agglomerate inside of laser 

focus (b). Consecutive SERS spectra of 13C-E. coli (red mean spectrum) and 12C-E. coli (blue mean 

spectrum) inside of the same sample with activated optical tweezer laser. Associated spectra are shifted 

for a better visualization (c). From Weiss et al. [91] (PX). 

Thus, SIRM (in combination with resonance and SERS effects) has a high potential for 

the nondestructive, quantitative and spatially resolved analysis of different 

environmental samples and especially, biofilms. It can provide information on the 

carbon metabolism/flow, cell activity, and cell interactions in microbial communities. In 

the future studies we plan to explore the feasibility of SIRM for the characterization of 

environmental microbial communities, in particular for the analysis of microbial 

degradation of microplastics and nanoplastics. 
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5. Concluding remarks 

In the last fifteen years Raman microspectroscopy became a very efficient 

analytical technique in science and industry. The remarkable variety of applications 

(e.g., in inorganic and organic chemistry, pharmacology, microbiology, medicine, 

process control and quality control) reflects key advantages of RM, making this 

technique favorable compared to e.g., IR spectroscopy: i) insensitivity to water and, 

hence, suitability for the characterization of aqueous samples as well as 

(micro)biological systems in situ and in vivo; ii) a broad range of excitation 

wavelengths, helping to minimize the fluorescence problem and to improve the 

spatial resolution. Additionally, a combination of RM with stable isotope approach 

(SIRM) enables characterization of the molecular and isotopic composition of 

different samples down to µm-range. Furthermore, the sensitivity of RM and SIRM 

can be significantly improved by utilizing resonance or/and SERS effects. 

The present work summarizes studies on the applicability of RM for the 

environmental analysis, performed at our institute with the focus on i) 

characterization of nanostructure of carbonaceous materials and prediction of their 

structure-related reactivity; ii) identification and quantification of microplastic and 

nanoplastic particles; and iii) SIRM and SERS analysis of microorganisms and 

biofilms. 

In the future, automation of the entire RM analysis, including the recognition and 

localization of particles or microbial cells followed by their morphological and 

chemical characterization, will facilitate a higher sample throughput together with 

high analytical accuracy of studies. Furthermore, a combination of RM with other 

techniques, providing better spatial resolution (e.g., SEM, NanoSIMS) or 

fractionation of nanoparticles (by e.g., AF4 or CF3), can extend the applicability of 

RM below diffraction limit. The combination of RM with the stable isotope approach 

can give unique insights into the carbon metabolism/flow, cell activity, and cell 

interactions in microbial communities. Altogether, this should open new possibilities 

for comprehensive analysis of complex environmental matrices and for better 

understanding of processes occurring on µm-scale or on the single-cell level. 
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