
Zwitterionic and Anionic Multinuclear Silicon( ) Complexes with
Bridging ( , )-Tartrato(4–) Ligands: Synthesis and Reactivity in

Aqueous Solution

IV

R R

Jörg Weiss, Bastian Theis, W. Peter Lippert, Rüdiger Bertermann, Christian Burschka,
Reinhold Tacke

Universität Würzburg, Institut für Anorganische Chemie, Am Hubland,
D-97074 Würzburg, Germany

Introduction

In continuation of our ongoing systematic studies on higher-coordinate silicon compounds that
exist in aqueous solution , the dinuclear
pentacoordinate silicon( ) complexes (zwitterionic) and (anionic) were synthesized and
characterized by solution and solid-state NMR spectroscopy. In addition, compound was
structurally characterized by single-crystal X-ray diffraction. The stability of and towards
hydrolysis in aqueous solution was studied by NMR spectroscopy.
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(in this context, see ref. [1] and references cited therein)

Syntheses

Compound was synthesized according to Scheme 1 by treatment of tetramethoxysilane with
choline ( , )-trihydrogentartrate (molar ratio 1:1) in boiling , -dimethylformamide. Dissolution
of in water at ambient temperature and immediate freeze drying of the resulting aqueous solution
afforded compound .
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Crystal StructureAnalysis

Compound was structurally characterized as the by single-crystal X-ray
diffraction (Figure 1).

1 solvate ·3DMSO1

Conclusions

The zwitterionic dinuclear pentacoordinate silicon( ) complex can be prepared in a one-step
synthesis starting from tetramethoxysilane and choline ( , )-trihydrogentartrate. Compound
undergoes a rapid hydrolysis in aqueous solution at ambient temperature to form the dianionic

Si, Si‘-disilicate , which can be isolated by freeze drying.
In aqueous solution, compound shows a remarkable kinetic inertness against hydrolysis and
hydrolyzes very slowly to afford ( , )-tartaric acid, choline, and orthosilicic acid. However, under
strongly acidic and basic conditions, rapid hydrolysis is observed.

Future studies of the condensation reaction of the dianion of ( ) ( formation of polynuclear

silicon( ) complexes such as and ) have to elucidate the potential of this chemistry for material
sciences.
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Stability in Aqueous Solution

The kinetic stability of in aqueous solution was studied by H NMR spectroscopy using the C
resonance signals of the bound ( , )-tartrato(4–) ligands of and those of the free tartaric acid
formed by hydrolysis. At concentrations of 10 and 100 mM (solvent D O), compound was found

to undergo a slow hydrolysis over a period of more than 10 days, followed by gel formation. The
kinetic stability of in aqueous solution strongly depends on the pH value (Figure 2).
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Scheme 1

Scheme 2

As shown in Scheme 2, the dianion of ( ) undergoes a condensation reaction in DMSO (20 °C)
to give the tetra- and hexanuclear complexes and . The identities of and were established
by multinuclear NMR spectroscopy.
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Figure 3

The kinetic stability of the pentacoordinate silicon complex is significantly higher than that of the
tetracoordinate silicon compound tetramethoxysilane [Si(OMe) ]. This has been demonstrated by

kinetic studies ( H NMR spectroscopic analysis; 300.1 MHz; 23 °C) with an equimolar mixture of
and Si(OMe) in D O/CD CN [1:1 (v:v); = 50 mM] (Figure 3).
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Selected bond lengths [pm]: Axial bond angles [°]:

Si1–O1    1.789(2)          Si2–O8      1.801(2)           O1–Si1–O3:    177.36(12)
Si1–O2    1.666(2)          Si2–O9      1.658(2)           O8–Si2–O10:  176.59(12)
Si1–O3    1.813(2)          Si2–O10    1.807(2)
Si1–O4    1.660(2)          Si2–O11 1.666(2)
Si1–O5    1.636(2)          Si2–O12    1.647(3)

Berry distortions (TBP SP): 6.6% (Si1, pivot atom O5), 8.2% (Si2, pivot atom O12).→
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Figure 1. Molecular structure of in the crystal of ·3DMSO1 1

Figure 2
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