Die Ressourcenuniversität. Seit 1765.

W TECHNISCHE Asymmetric Bis(organylamino)dimethylsilanes -**UNIVERSITÄT** Synthesis and Application

Conny Wiltzsch, Konstantin Kraushaar, Anke Schwarzer and Edwin Kroke

Institut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg

Introduction

Aminosilanes and silazanes are used as precursors for Si/N-, Si/N/C- or Si/N/C/O-ceramics (e.g. fibers, layers)^[1,2]. Alternativly these compounds may be used for the synthesis of useful molecular and polymeric products. Urea can be synthesized from silylcarbamates^[3]. Asymmetrically substituted bis(organylamino)silanes were synthesized^[4], and their use for the synthesis of urea and silicones by reaction with carbon dioxide was investigated^[5] (Fig. 1).

Aminosilane **Synthesis**

For the reaction of *n*-propylamine and cyclohexylamine with dichlorodimethylsilane different pathways are possible^[4] (For reaction \mathbf{I} , III and **V** see Tab. 1):

 $I RNH_2$ and $R'NH_2$ as well as Me_2SiCl_2 , were put togehter in the reaction vessel at once.

II Reaction of Me₂SiCl₂ with RNH₂. No isolation of **2a**. Filtration of the hydrochloride and addition of $R'NH_2$.

III Reaction of Me₂SiCl₂ and RNH₂ and isolation of compound **2a**, followed by reaction with $R'NH_2$.

IV Reaction of Me_2SiCl_2 with R'NH₂. No isolation of **2b**. Filtration of the hydrochloride and addition of RNH_2 .

V Reaction of Me_2SiCl_2 and $R'NH_2$, isolation followed by reaction with RNH_2 .

Synthesis of Carbamoyloxysilanes

Bubbling CO_2 into a mixture of the asymmetric aminosilane **3** with THF yields the expected

The ¹³C-NMR spectra (Fig. 2) show the two carbonyl-groups appear at ~ 155 ppm. Also elementary analysis proved the generation of cyclohexylcarbamoyloxy(n-propylcarbamoyl-

Thermal Treatment

Tab. 2 shows the molecular mass peaks, of the product obtained by the thermal treatment of **4**. All these possible urea **6a**, **6b** and **6c** are

Heating of cyclohexylcarbamoyloxy(n-propylcarbamoyloxy)dimethylsilane **4** up to 220°C results in the symmetric, asymmetric urea and the

The ¹³C-NMR spectrum (Fig. 3), shows three different signals near 160 ppm. This is the typical region of carbonyl-groups and stand for the

. 1 summarize the results of the different lab. pathways. In all cases mixtures of the different possible products are formed.

The question was now, how to seperate the three aminosilanes.

In previous work, iso-propylamine instead of cyclohexylamine was used. The boiling points in this case are very close. But destillation of the three products $Me_2Si(NHR)_2$, $Me_2Si(NHR')_2$ and the desired product Me₂Si(NHR)(NHR')was succesful. In the first fraction the Me₂Si(NHR)₂ was obtained and in the second the asymmetrically substituted aminosilane.

		anther man and an and and
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm Fig. 2: ¹³ C-NMR: cyclohexylcarbamoyloxy(<i>n</i> -propyl- carbamoyloxy)dimethylsilane 4 .	Fig. 3: ¹³ C-NMR spectrum of the mixture oc 6a-c found by heating to 220°C.	Fig. 4: ²⁹ Si-NMR spectrum of the residue abtained after heating 4 to 220°C.

Summary

Α

It was possible to synthesize asymmetrically substitued aminosilanes starting from chlorosilane 1 and addition of the n-propyl- and cyclohexylamine. Destillation of the poduct mixture results in pure cyclohexylamino(npropylamino)dimethylsilane. The reaction with carbon dioxide gave the expected carbamoyloxysilane 4. The thermal treatment results in three possible urea 6a-c and siloxanes 5a-b.

References

[1] M. Jansen, Structure & Bonding, High Performance Non-Oxide Ceramics I. Springer-Verlag, Berlin, Heidelberg, 2002. [2] E. Kroke, Ya-Li Li, C. Konetschny, E. Lecomte, C. J. Smith, M. W. S. Tsang, A. Boyer, S. Saubern, Chem. Comm. 2008, 2152–2154. [4] U. Wannagat, S. Klemke, Monatshefte Chemie, 110, 1979, 1077-1088. [5] C. Wiltzsch, J. Wagler, G. Roewer, E. Kroke, Patentanmeldung, DE102009045849.2, PCT WO 2011048159 A1 20110428.

Presented at Frontiers in Silicon Chemistry -1st Munich Forum on Functional Materials, Garching, Germany, April 14th-15th 2011

contact information: Prof. Dr. Edwin Kroke

Tel.: +49 (0) 3731 39 3174 Fax.: +49 (0) 3731 39 4058

