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Quantum pattern recognition with liquid-state nuclear magnetic resonance
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A novel quantum pattern recognition scheme is presented, which combines the idea of a classic
Hopfield neural network with adiabatic quantum computation. Both the input and the memorized
patterns are represented by means of the problem Hamiltonian. In contrast to classic neural net-
works, the algorithm can return a quantum superposition of multiple recognized patterns. A proof of
principle for the algorithm for two qubits is provided using a liquid state NMR quantum computer.
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I. INTRODUCTION

The framework of Natural Computing tries to model
architectures found in Nature and to apply them to a di-
versity of computational tasks. Its biological domain is
represented among others by neural networks and evo-
lutionary computation. In physics, novel algorithmic
schemes have been investigated in the context of quan-
tum computation. Based on these ideas, we investigate
how pattern recognition can be implemented using prin-
ciples of quantum computing.

Artificial neural networks involve interacting units
called neurons designed according to neural structures of
a brain which cooperate in order to process information
[1]. Similar to the brain, artificial neural networks are ca-
pable of performing cognitive tasks such as pattern recog-
nition and associative memory. Pattern recognition pro-
cesses input data usually on the basis of a priori knowl-
edge in the form of a set of memorized patterns. An input
pattern is then classified to whichever one of the memory
patterns it most closely resembles. Typical applications
for pattern recognition include automatic recognition of
objects and patterns in digital image analysis as well as
voice and speech recognition. An associative memory is
a system that completes partially known input pattern
based on the stored content. Typical applications for as-
sociative memory include content-addressable memory as
a special type of computer memory and database engines.

A classic theoretical model to perform the described
tasks is a Hopfield network [2], a recurrent neural network
with symmetric connections between individual neurons.
Full connectivity is provided with every neuron i being
able to interact with any other neuron j 6= i by means
of a response function ri(t) =

∑

j 6=i wijSj(t) aggregated
as a weighted sum over the current states of all other
bipolar neurons Sj(t) = ±1 which correspond to biolog-
ical states of not firing and firing electrical signals to its
neighbor neurons. An activation function fi(x) of the
neuron i then evaluates ri in order to define if the neu-
ron remains in its currents state or a state flip is applied,
e.g., Si(t + ∆t) = fi(ri(t)), where fi(x) = sgn(x) is the

sign function.
For a set of p patterns P = {ξ1, . . . , ξp} = {ξµ} with

µ = 1, . . . , p and bipolar ξµ
i = ±1 different definitions for

the synaptic connection strength wij between neurons i
and j are possible, e.g. by the (discrete) Hebbian matrix

wij =
1

N

[
p
∑

µ=1

ξµ
i ξ

µ
j − pδij

]

, (1)

which stores the memory information in a distributed
manner. The input binary vector ξinp is imposed on the
Hopfield network as its initial state. The dynamics of the
system is designed such as to minimize a cost function

E(S(t), w) = −1

2

∑

ij

wijSi(t)Sj(t) (2)

by converting the state of the network to a stable config-
uration which represents the recognized pattern. Thus,
the physical background of the Hopfield model offers an
approach for quantization of the neural network.

Quantum computers utilize special characteristics of
quantum systems such as superposition and entangle-
ment [3]. The corresponding algorithms provide compu-
tational effectiveness in comparison with classic routines
for problems such as search [4] and factorization [5]. Dif-
ferent hardware designs have been proposed for build-
ing a quantum computer, including liquid state NMR
[6, 7, 8, 9] and ion traps [10]. The extensive technolog-
ical development of NMR spectroscopy in the last five
decades made it possible for NMR quantum computing
to become a suitable test ground for novel quantum al-
gorithms.

A systematization of quantum computing using adia-
batic evolution leads to the concept of Adiabatic Quan-
tum Computation (AQC) [11] that has been proven to
be equivalent to the standard network model of quantum
computation [12]. Compared to the abstract computa-
tional language of the quantum networks model, AQC
often provides a more direct translation to experimental
quantum computing.
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The protocol for AQC is represented by a controlled
Hamiltonian path H(s) with s = t

T
∈ [0, 1] and run-

ning time T . The computational problem is encoded in
the final Hamiltonian H(1) = Hp and the solution of
the computational problem corresponds to finding the
ground state of Hp. On the other side, the initial state
of the quantum system |ψ(0)〉 is chosen to be an easily
preparable ground state of H(0) = Hi. If the Hamilto-
nian is driven from Hi to Hp slowly enough, i.e., if the
total calculation time T is chosen to be long enough, then
in the adiabatic limit the final state of the quantum sys-
tem comes arbitrarily close to the problem ground state.
AQC can also be formulated in the framework of Quan-
tum Annealing [13] utilizing a Hamiltonian trajectory

H(s) = Λ(s)Hi + Hp (3)

with Λ(0) large enough to make Hi the dominating
term and Λ(1) = 0 which reduces the Hamiltonian to
the constantly present contribution by Hp. The trans-
verse Hamiltonian Hi represents the driver for the adi-
abatic evolution whereas the initial state |ψ(0)〉 of the
annealing process is chosen so it corresponds approxi-
mately to an energy eigenstate of the initial Hamiltonian
H(0) = ΛmaxHi + Hp.

In classic terms, AQC represents minimization of an
energy cost function. This offers a link from (usually
irreversible) classic neural dynamics to quantum dynam-
ics governed by unitary, reversible evolution. However,
the classic Hopfield network approach performs pattern
recognition by local optimization. In the following, we
utilize AQC which performs global optimization in form
of ground state approximation.

II. THEORY

We consider a quantum neural network withN neurons
consisting of bipolar neural states −1 and +1 to be repre-
sented by a quantum system with N qubits in states |0〉
and |1〉. Whereas a classic artificial neuron can assume
only a single “fire” or “not fire” state at once, quantum
neurons allow superpositions of these two states in the
form of α|0〉 + β|1〉 with |α|2 + |β|2 = 1.

In order to apply AQC to the computational task of
(associative) pattern recognition, we encode the complete
problem in the Hamiltonian

Hp = Hmem + ΓHinp (4)

with Hmem representing the knowledge about stored pat-
terns, Hinp representing the computational input and an
appropriate weight factor Γ > 0 (see Fig. 1).

Whereas the classic Hopfield network utilizes dynam-
ics defined by the memory patterns alone, the dynamics
according to Eq. (4) depends on both memory and input
information (see Fig. 2).

Furthermore, the encoding of the final adiabatic
Hamiltonian as a sum of two independent terms offers

FIG. 1: Illustrative representation of the energy landscapes
for the memory Hamiltonian Hmem (A), the weighted input
Hamiltonian ΓHinp (B) and the total problem Hamiltonian
Hp (C). Dashed circles represent memory patterns stored as
energy minima of Hmem; crossed dashed circle represents the
input pattern as energy minimum of Hinp.

an advantage with respect to the practical implementa-
tion of the process. Using appropriate approximations
(such as Suzuki-Trotter), the computational evolution of
the system can be approximated by separate periods of
unitary evolution each according to the individual terms
building the total instantaneous Hamiltonian. This im-
plies that the memory precompilation, i.e., the trans-
lation of dynamics according to Hmem into elementary
physical interactions such as pulse sequences in NMR
quantum computing systems has to be executed only
once for an individual memory set. The generated low-
level commands can then be reused for variable input in-
formation. The dynamics according to the input Hamil-
tonian Hinp can be obtained and imposed independently.

In direct analogy to energy function (2), the memory
Hamiltonian can be defined by the coupling strengths
between the qubits

Hmem = −1

2

∑

i6=j

wijσ
z
i σ

z
j , (5)

where σz
i is the Pauli z matrix on qubit i and wij is

the Hebbian matrix (1). A more general choice of the
memory Hamiltonian is discussed in Appendix A.

For the retrieval Hamiltonian Hinp we consider a single
input pattern ξinp of length N . For associative memory
applications we can extend a noncomplete input vector

ξ̂inp of length n < N by setting the values for N − n
unknown states to zero. In contrast to the classic neural
network, we impose the input pattern ξinp on the dy-
namics of the system by an additional Hamiltonian term
Hinp which can be defined as

Hinp =
∑

i

ξinp
i σz

i . (6)
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FIG. 2: Illustrative representation of classic and quantum dy-
namics within the energy landscape. Classic dynamics drives
the initial state (crossed circle) which represents the input
pattern toward the final state (solid circle) which represents
a nearby memory pattern. Quantum dynamics transforms
the energy landscape from the initial Hamiltonian close to
Hi (A) via intermediate Hamiltonian H(t) (B) towards the
final Hamiltonian equivalent to the problem Hamiltonian Hp

(C). The current state of the system remains the ground state
of the instantaneous Hamiltonian with the “empty memory”
state |ψun〉 (7) for t = 0 (represented by the star in A) and
the final state of the system corresponding to the outcome
memory pattern for t = T (represented by the solid circle in
C).

For a given state |ξ〉 representing a pattern ξ, the energy

corresponding to Hinp is given by Einp(ξ) = −n+2ĥ and

depends on the Hamming distance ĥ = 0, . . . , n between

ξ̂inp and ξ̂ = [ξ1, . . . , ξn], i.e., the number of positions for
which the corresponding entries are different. The ex-
ternal field defined by Hinp thus creates a scalar metric
proportional to the Hamming distance between ξinp and
memory patterns. This permits a quantitative compari-
son between input and memory patterns by shifting the
energy levels of the memory Hamiltonian Hmem so the
more similar memory patterns have lower energy com-
pared to the alternative patterns. It can be shown that
for the case of a single stored pattern (p = 1), the up-
per bound for the weight factor in Eq. (4) is given by
Γ < 1 − n

2N
which ensures that the correct memory pat-

tern is the ground state of the system (cf. Appendix B).
Finally, we define the initial conditions of the AQC pro-

tocol. In comparison with the classic Hopfield network,
the initial state of quantum pattern recognition systems
does not correspond to the input pattern but is chosen
as

|ψ(0)〉 ≡ |ψun〉 =
1

2
N

2

2N−1∑

k=0

|k〉 (7)

representing an “empty memory” with uniformly dis-
tributed probability for all possible state configurations.

As corresponding initial Hamiltonian, we choose an eas-
ily constructible sum over single qubit operators Hi =
1
2

∑

i(1 − σx
i ) [14] which can be implemented experi-

mentally in a straightforward way. Since the problem
Hamiltonian Hp (4) is diagonal, the transverse form of
Hi ensures the transformation of the initial state |ψun〉
(7) toward the outcome memory pattern.

III. EXPERIMENTS

For the simulations and experiments, we considered a
heteronuclear two spin system corresponding to the 1H
and 13C nuclear spins 1

2 of 13C labeled sodium formate
dissolved in D2O. The experiments were performed at a
temperature of 27◦C using a Bruker AC 200 spectrom-
eter operating at a Larmor frequency of 200 MHz for
1H and 50 MHz for 13C. The heteronuclear 1H-13C cou-
pling constant is J = 195 Hz and the relaxation times
are T1(

1H) = 1.6 s, T1(
13C) = 2.7 s, T2(

1H) = 130 ms,
and T2(

13C) = 60 ms. In this section, we use normalized
Pauli operators as conventional in NMR [15].

In order to provide an experimental demonstration for
the concept of quantum pattern recognition, we imple-
ment a basic two-neurons Hopfield network using a liq-
uid state NMR quantum computer. The single connec-
tion w = w12 = w21 between two qubits corresponds for
w = −1 to patterns [−1,+1] and [+1,−1] with differ-
ent bit values whereas w = +1 corresponds to patterns
[−1,−1] and [+1,+1] with identical bit values. Following
Eq. (4), the problem Hamiltonian can be written as

Hp = −wσz
1σ

z
2 + Γ

(

ξinp
1 σz

1 + ξinp
2 σz

2

)

. (8)

The NMR free evolution Hamiltonian

H′
p = 2πJσz

Hσ
z
C + 2πνHσ

z
H + 2πνCσ

z
C (9)

for the considered molecule shows a constant positive
coupling. The variable memory weight w according to
Eq. (8) can be implemented by changing the sign of the
effective coupling Hamiltonian using additional pulses
[18, 19]. In the case of two qubits considered here an
alternative approach which avoids the need for addi-
tional pulses is the following. We can map the problem
by defining the offset frequencies νH = −wΓJξinp

1 and

νC = −wΓJξinp
2 and redefining the initial Hamiltonian

as problem dependent H′
i = 2πw(σx

H + σx
C). The ini-

tial quantum state |ψun〉 of Eq. (7) corresponds to the
ground state of Hi for w = −1 and to its highest excited
energy eigenstate for w = +1. Our choice of νH and νC

consequently encodes the desired |ψres(w, ξ
inp)〉 as the

ground state, respectively, the corresponding highest ex-
cited state of the Hamiltonian H(T ). In classic terms,
the first case represents minimization of a cost function
whereas the second involves its maximization.

Following Eq. (7), the desired initial state for the
considered heteronuclear two spin system is |ψun〉 =
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1
2 (|00〉 + |01〉 + |10〉 + |11〉) with corresponding density
matrix ρun = |ψun〉〈ψun|. Rewriting this density ma-
trix in terms of spin operators, ignoring the identity
term and proportionality constants, the initial state can
be represented by the simplified and traceless operator
ρ(0) = σx

H +σx
C +2σx

Hσ
x
C . This state can be created start-

ing from the thermal equilibrium using standard methods
based on spatial averaging [20].

The transverse form of the initial Hamiltonian Hi sug-
gests that pulse sequences applied on the transverse di-
rection x can be used not only to generate but also to
effectively control the initial Hamiltonian. More specif-
ically, Hi is represented by a transverse radio frequency
(rf) field in positive or negative (depending on w) x di-
rection on both spins. The amplitude of the rf field Λ(t)
is reduced linearly from Λ(0) = Amax to Λ(T ) = 0 during
the fixed evolution time T = 50ms which is shorter than
relaxation times T1 and T2. The offsets νH and νC in
Eq. (9) were set to values ±100 Hz and 0 Hz correspond-
ing to values ξi = ±1 and ξi = 0, respectively.

In the simulations and experiments of quantum anneal-
ing, the time evolution of the system was discretized into
L steps of length ∆t = T/L with constant Hamiltonian
H(t) for the time interval [t, t+∆t]. The continuous evo-
lution is approximated for L→ ∞ and ∆t→ 0. Our nu-
merical results suggested that L = 100 leads to sufficient
accuracy. We chose Γ = 0.5 for the weight parameter of
the retrieval Hamiltonian term. We set Amax = 600 Hz,
where in simulations we get a reasonable value of 98% for
the overlap tr (ρfρexp) between final state of the system
ρf and expected outcome state ρexp.

The result of the quantum annealing is read out by
applying π

2 pulses followed by detection of the 1H or 13C

signals. The 1H signals were acquired as single scan while
13C signals were acquired using 16 scans. The spectra
recorded after the read out are shown in Fig. 3. A rea-
sonable match between the experimental results and sim-
ulations (data not shown) is found. The first and third
columns represent 1H spectra which encode the computa-
tional results as presented in Table I. The first four rows
represent applications of associative pattern recognition
with n = 1 and N = 2 where the algorithm evaluates
the Hamming distance between the input and the partial
memory patterns. A single peak at frequency νH± J

2 cor-
responds to a unique recognized pattern. The peak’s po-
sition and sign direction identify the pattern recognition
results, e.g., left negative peak identifies the state |−1, 1〉
corresponding to the output pattern [-1,1]. For the case

of the blank input pattern ξinp
1 = ξinp

2 = 0, the quantum
neural network returns its memory content as consistent
patterns [-1,1], [1,-1] for w = −1 and [-1,-1], [1,1] for
w = +1. The resulting quantum state represents a su-
perposition of pattern states identified by corresponding
spectral peaks. For completeness, we show in the second
and fourth column of Fig. 3 corresponding 13C spectra.
Peaks at νC ± J

2 provide redundant information for the
identification of the patterns.

FIG. 3: Experimental 1H and 13C spectra for five combina-
tions of ξinp

1
and ξ

inp

2
and two possible values of w, where

w = −1 and w = +1 correspond to stored patterns with op-
posite and equal bit values, respectively. The spectral range
in each spectrum is ±240 Hz.

ξ
inp

1
ξ

inp

2
|ψout〉 for w = −1 |ψout〉 for w = +1

-1 0 | − 1, 1〉 | − 1,−1〉

1 0 | 1,−1〉 | 1, 1〉

0 -1 | 1,−1〉 | − 1,−1〉

0 1 | − 1, 1〉 | 1, 1〉

0 0 1
√

2
(| − 1, 1〉 + |1,−1〉) 1

√

2
(| − 1,−1〉 + |1, 1〉)

TABLE I: The results of the pattern recognition represented
by the corresponding pure quantum states.

IV. CONCLUSION

In summary, we have developed a new theoretical ap-
proach for quantum pattern recognition and implemented
it using liquid state NMR techniques in a simple exam-
ple with two qubits. In the case of an associative mem-
ory, an incomplete input typically yields several memory
patterns which are equally similar to this input. In con-
trast to classic neural networks, a quantum neural regis-
ter can represent a superposition of recognized patterns.
Whereas linearly combined classic mixture states, e.g.,
of the form sgn(±ξµ ± ξν ± ξυ) [1] do not provide direct
information about corresponding memory patterns, the
quantum superposition states allow unambiguous read-
out of distinct patterns which form the superposition by
means of an appropriate (iterative) measurement proce-
dure.

The projector memory Hamiltonian enables the mea-
surement of similarity between the input pattern and
stored patterns as well as allows a differentiation between
memory patterns and their reversed patterns −ξµ in con-
trast to classic Hopfield network (cf. Appendix A). Since
the problem is directly encoded into the final Hamilto-
nian Hp, no ancilla qubits are required. Furthermore,
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AQC dynamics rules out closed state cycles of the form
S(t + T ) = S(t) with a period T > 1 which are possible
for classical neural networks [1].

In the experiments, we realized the desired morph-
ing between the Hamiltonians using quantum annealing.
This allowed us to exploit the experimentally available
control terms and did not require an iterative synthesis
of the effective Hamiltonian trajectory [22]. Furthermore,
we performed both ground and excited state AQC.

Several characteristics of the introduced concept re-
main open and require further research. The compari-
son of maximum storage capacity of the presented AQC
based model and classic Hopfield network is an open
problem that motivates additional study. Furthermore,
time requirements for pattern retrieval can be investi-
gated by studying the minimum energy gap during the
course of the evolution [23] as well as employing heuristics
related to success probability [11]. Future investigations
could also involve optimized annealing procedures which
could provide significant improvements over alternative
schemes [16]. An interesting enhancement of the pro-
posed scheme could be introduced by considering asym-

metric synaptic weights in neural modeling [17]. Future
directions of research also include the extensions to larger
spin systems using liquid state NMR quantum computa-
tion with the control of individual couplings of the ef-
fective Hamiltonian H(t) executed by means of pulse se-
quences and refocusing schemes [18, 24, 25, 26]. The
developed techniques can be potentially applied to alter-
native hardware designs, such as ion traps with magnetic
field gradients [27] which have been already contextual-
ized in quantum neural research [28] and superconducting
circuits [29].
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tum search projection operators [21]. It can be defined
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as a memory Hamiltonian

Ha
mem = 1−

∑

µ

|ξµ〉〈ξµ| (A1)

which is diagonal in the computational basis. The defini-
tion represents the ideal case of memorized patterns en-
coded in the (degenerate) ground state energy of Ha

mem

whereas not-memorized patterns correspond to excited
states. In combination with the input Hamiltonian Hinp

(6), the bound for the input weight is given by Γ < 1
2n

for arbitrary values of p (cf. Appendix B).
Alternatively, the memory Hamiltonian can be speci-

fied as a projector on the memory state

Hb
mem = 1− |ξmem〉〈ξmem| (A2)

with memory state

|ξmem〉 =
1√
p

∑

µ

|ξµ〉. (A3)

In the case of both projector memory Hamiltonians, the
initial Hamiltonian can be chosen as a projector Hi =
1N − |ψun〉〈ψun|.

Using the definition Hb
mem (A2), we can solve the prob-

lem of quantifying the level of similarity between the in-
put pattern ξinp and all memory patterns. For this, the
probability for measuring the memory pattern ξµ is inter-
preted as a measurement of relevance. For comparison,
the initial probabilities for the memory state (A3) are

equally distributed with pµ ≡ |〈ξµ|ξmem〉|2 = 1
p
. In com-

bination with the input Hamiltonian Hinp (6), the ground
state of the problem Hamiltonian Hp = Hb

mem + ΓHinp

is

|ψp
0〉 ∝

∑

µ

1√
p

[

1 − 2Γδĥµ

]

|ξµ〉 +O(Γ2), (A4)

where ĥµ = dH(ξinp, ξ̂µ) is the Hamming distance be-

tween ξ̂µ = [ξµ
1 , . . . , ξ

µ
n ] and the retrieval pattern, δĥµ =

ĥµ − 〈ĥ〉 is the deviation of the Hamming distance from

the average relative Hamming distance 〈ĥ〉 = 1
p

∑p

µ=1 ĥµ.

Thus, the input Hamiltonian shifts equally distributed
weights in the memory state (A3) according to the cor-
responding Hamming distances.

We outline this effect using perturbation theory [30] for
the problem Hamiltonian Hp in relation to the parame-
ter Γ. The ground state energy and the corresponding
eigenstate can be represented by

Ep
0 = Emem

0 + ΓE
(1)
0 + Γ2E

(2)
0 +O(Γ3),

|Ep
0 〉 = |Emem

0 〉 + Γ|E(1)
0 〉 + Γ2|E(2)

0 〉 +O(Γ3).(A5)

The first order approximation energy is given by E
(1)
0 =

〈Emem
0 |Hinp|Emem

0 〉. Using the definition of the input

Hamiltonian, it follows for ξ̂µ = [ξµ
1 , . . . , ξ

µ
n ]:

Hinp|Emem
0 〉 =

1√
p

∑

µ

Hinp|ξµ〉 =
1√
p

∑

µ

(−ŝµ) |ξµ〉,

(A6)

where ŝµ = ξinp ·ξ̂µ is the scalar product between vectors.

Since ŝµ = n − 2ĥµ with the Hamming distance ĥµ =

dH(ξinp, ξ̂µ) for the first n elements, it follows

Hinp|Emem
0 〉 =

1√
p

∑

µ

(

−n+ 2ĥµ

)

|ξµ〉

= −n|ξmem〉 +
2√
p

∑

µ

ĥµ|ξµ〉.

Using 〈ξµ|ξν〉 = δνµ, we obtain for the first order energy
correction

E
(1)
0 = −n〈ξmem|ξmem〉 +

2

p

∑

νµ

〈ξν |ĥµ|ξµ〉

= −n+ 2〈ĥ〉

with average relative Hamming distance 〈ĥ〉 = 1
p

∑

µ ĥµ.

The first order approximation state is given by

|E(1)
0 〉 = −

2N−1∑

k=1

〈Emem
k |Hinp|Emem

0 〉
Emem

k − Emem
0

|Emem
k 〉.

By definition of the Hamiltonian Hb
mem (A2), the energy

levels are Emem
0 = 0 and Emem

k>0 ≡ 1. Since |Emem
k 〉 form

an orthonormal basis, it follows using Eq. (A6)

|E(1)
0 〉 = −

∑

k 6=0

〈Emem
k |Hinp|Emem

0 〉|Emem
k 〉

= −




∑

k 6=0

|Emem
k 〉〈Emem

k |



Hinp|Emem
0 〉

= (1− |ξmem〉〈ξmem|) 1√
p

∑

µ

ŝµ|ξµ〉

= −〈ŝ〉|ξmem〉 +
1√
p

∑

µ

ŝµ|ξµ〉

with average relative scalar product 〈ŝ〉 = 1
p

∑

µ ŝµ ≡
n− 2〈ĥ〉. Using state approximation (A5), we obtain for
the zero and first order

|Ep
0 〉 = |Emem

0 〉 + Γ|E(1)
0 〉

=
1√
p

∑

µ

|ξµ〉 + Γ

(

1√
p

∑

µ

ŝµ|ξµ〉 − 〈ŝ〉 1√
p

∑

µ

|ξµ〉
)

=
1√
p

∑

µ

(1 + Γ (ŝµ − 〈ŝ〉)) |ξµ〉.

We rewrite this expression in terms of the Hamming dis-
tance, thus obtaining expression (A4),

|Ep
0 〉 ∝

∑

µ

1√
p

[

1 − 2Γδĥµ

]

|ξµ〉 +O(Γ2).

In case of all memory patterns ξµ being equidistant from
the input pattern with regard to the first n positions, the
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FIG. 4: Final measurement probabilities according to mem-
ory set (A7) and input pattern (A8). The peaks corre-
spond to memory patterns ξ1 = | − 1,−1,−1,−1,−1〉 ≡ |1〉
(peak A), ξ2 = | − 1,−1,−1,+1,−1〉 ≡ |3〉 (peak B) and
ξ3 = | − 1,−1,+1,−1,+1〉 ≡ |6〉 (peak C) in binary and dec-
imal representation, respectively.

deviation δĥµ equals zero so that corresponding measure-
ment amplitudes are equally distributed. Otherwise, the
amplitudes are shifted according to whether the distance
to the input pattern is above- or below-average.

For completeness, we derive the second order approxi-
mation energy given by

E
(2)
0 = −

2N−1∑

k=1

∣
∣〈Emem

k |Hinp|Emem
0 〉

∣
∣
2

Emem
k − Emem

0

.

It follows E
(2)
0 = −4∆ĥ2 where ∆ĥ2 = 〈ĥ2〉 − 〈ĥ〉2 is the

standard deviation for ĥi and 〈ĥ2〉 = 1
p

∑

i ĥ
2
i .

In order to affirm the bias beyond the approximation to
first order, we demonstrate the corresponding probabil-
ity distribution for an exemplary memory set and input
pattern

P =






−1 −1 −1 −1 −1

−1 −1 −1 +1 −1

−1 −1 +1 −1 +1




 , (A7)

ξinp =
(

−1 −1 −1 −1 −1
)

, (A8)

with Hamming distances between the input pattern and
the memory set given by d1 ≡ dH(ξinp, ξ1) = 0, d2 = 1,
and d3 = 2. Fig. A shows for Γ = 0.1 the distribution of
measurement probabilities with p1 ≈ 0.476, p2 ≈ 0.308,
and p3 ≈ 0.216.

APPENDIX B: INPUT WEIGHT

For p = 1, we derive the bounds for the weight factor Γ
in combination with the coupling memory Hamiltonian

Hmem (5). Since the Hamming distance between two
patterns is symmetric under flips of the same positions,
the memory pattern of length N and input pattern of
length n ≤ N can be written in the form

ξ1 = [

N
︷ ︸︸ ︷

−1 − 1 . . . − 1
︸ ︷︷ ︸

n

−1 . . . − 1
︸ ︷︷ ︸

N−n

],

ξinp = [

n
︷ ︸︸ ︷

−1 − 1 . . . − 1
︸ ︷︷ ︸

n−m

+1 . . . + 1
︸ ︷︷ ︸

m

],

where m is the Hamming distance between the patterns
for the first n elements. An arbitrary vector ξ of the
length N can thus be written in the form

ξ = [

n−m
︷ ︸︸ ︷

−1 . . .− 1
︸ ︷︷ ︸

(n−m)−m1

+1 . . .+ 1
︸ ︷︷ ︸

m1

m
︷ ︸︸ ︷

−1 . . .− 1
︸ ︷︷ ︸

m−m2

+1 . . .+ 1
︸ ︷︷ ︸

m2

. . .

. . .

N−n
︷ ︸︸ ︷

−1 . . .− 1
︸ ︷︷ ︸

(N−n)−m3

+1 . . .+ 1
︸ ︷︷ ︸

m3

]

where m1, m2, and m3 represent the distances betweens
ξ and three respective segments of the memory pattern
ξ1 of the length n−m, m, and N−n. Using the definition
of memory and input Hamiltonians, we obtain

Ep(ξ1) = Emem(ξ1) + ΓEinp(ξ1)

= −N
2

+
1

2
− Γ (n− 2m) ,

Ep(−ξ1) = Emem(−ξ1) + ΓEinp(−ξ1)

= −N
2

+
1

2
+ Γ (n− 2m) ,

Ep(ξ) = Emem(ξ) + ΓEinp(ξ)

= − 1

2N
[N − 2M ]

2
+

1

2
−Γ (n− 2 (m1 + (m−m2))) ,

where M = m1 + m2 + m3 if d(ξ, ξ1) ≤ d(ξ,−ξ1) and
M = N − (m1 +m2 +m3), otherwise.

Since Ep(−ξ1)−Ep(ξ1) ∝ Γ (n− 2m), for all valid val-
ues of Γ the memory pattern closer to the input pattern
also has lower energy level. In the following, we assume
ξinp is closer to the original pattern ξ1 with 0 ≤ m ≤ r̂
where r̂ = ⌊n

2 ⌋. For the system to return a valid an-

swer, ξ1 must be the global ground state of the problem
Hamiltonian Hp (4) with

Ep(ξ1) < Ep(ξ 6= ξ1). (B1)

From condition (B1), it follows

Γ (m2 −m1) <
N2 − [N − 2 (m1 +m2 +m3)]

2

4N
. (B2)

In order to obtain the upper bound for the value of Γ, we
attempt to minimize the energy value corresponding to
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ξ. First, we assume m1 = 0 so that the overlap between
first segments of ξ1 resp. ξinp and the corresponding
spins of ξ is maximal. Furthermore, we assume m3 = 0
so that the overlap between the third segment of ξ1 and
ξ is maximal as well.

Since m2 ≤ m and m is bounded by n
2 , we obtain from

Eq. (B2) the condition

Γ < 1 − n

2N
.

A similar bound can be defined in combination with
the projector memory Hamiltonian Ha

mem (A1) for an
arbitrary value of p. We consider a subset of the memory
set Pmin = {ξ1, . . . , ξpmin} ⊆ P , the patterns of which

show the minimal distance to the input pattern ξinp with
∀ξµ ∈ Pmin : dH(ξinp, ξµ) = hmin. The condition for the
weight factor Γ can thus be given with

Ep(ξµ) = −Γ (n− 2hmin) < Ep(ξ 6= ξµ) = 1−Γ
(

n− 2ĥ
)

.

Since we are interested in a upper bound for Γ, we assume

ĥ = 0, i.e., ξ completes the partial input vector. With
0 ≤ hmin ≤ n, we obtain the corresponding condition

Γ <
1

2n
.


