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An optimal control algorithm for generating purely
phase-modulated pulses is derived. The methodology is
applied to obtain broadband excitation with unprece-
dented tolerance to RF inhomogeneity. Design criteria
were transformation of Iz → Ix over resonance offsets of
± 25 kHz for constant RF amplitude anywhere in the
range 10–20 kHz, with a pulse length of 1 ms. Sim-
ulations transform Iz to greater than 0.99 Ix over the
targetted ranges of resonance offset and RF variability.
Phase deviations in the final magnetization are less than
2–3◦ over almost the entire range, with sporadic devia-
tions of 6–9◦ at a few offsets for the lowest RF (10 kHz)
in the optimized range. Experimental performance of
the new pulse is in excellent agreement with the simu-
lations, and the robustness of the excitation pulse and a
derived refocusing pulse are demonstrated by insertion
into conventional HSQC and HMBC-type experiments.

Key Words: BEBOP, broadband excitation, optimal
control theory, phase modulation, PM pulses.

1. INTRODUCTION

Although dual compensation for RF inhomogene-
ity/miscalibration and chemical shift offset effects in ex-
citation has been difficult to achieve [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13], broadband excitation by optimized
pulses (BEBOP) [14, 15, 16, 17] has been shown to be an
effective solution for RF tolerance of 10–15%, which is typ-
ical of calibrated pulses output by high-quality RF probes.
Broadband in this context refers to a pulse capable of uni-

formly exciting the entire 13C chemical shift range at field
strengths of 800–900 MHz, requiring a bandwidth of 40–50
kHz.

Broadband pulses which tolerate an even higher de-
gree of RF inhomogeneity could also be useful. NMR-
spectroscopy on natural products is one potential applica-
tion. For example, calibration of 13C-pulses is extremely
difficult for natural abundance samples at very low concen-
tration. Moreover, significant variations in pulse length
can be caused by varying salt concentrations. Sufficient
RF tolerance would remove the need for painstakingly ac-
curate pulse calibrations, which are also important for op-
timal sensitivity of many complex multidimensional exper-
iments or the automated acquisition of a large number of
strongly differing samples.

Encouraged by the success of optimal control theory
in designing broadband pulses with outstanding perfor-
mance, we therefore consider a problem which has been
resistant to a successful solution: nearly calibration-free
broadband excitation. To accommodate the majority of
13C probes in use, the pulse should operate equally well
for a peak RF output anywhere in the range 10–20 kHz
(25–12.5 µs pulse width).

In addition, while the BEBOP pulses obtained to date
exhibit nearly ideal performance, their rapid and extreme
amplitude jumps can require some monitoring and ad-
justment of system hardware, primarily with regard to
amplifier linearity and accurate output of the waveform
generators. We have demonstrated that this is not a
problem for modern NMR-consoles with linearized ampli-
fiers and fast amplitude and phase switching times. For
NMR-spectrometers equipped with non-linearized ampli-
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fiers, however, constant amplitude pulses would be more
convenient.

For a given bandwidth and tolerance to RF variabil-
ity, an optimal control algorithm which allows ampli-
tude/phase modulation and limits the maximum RF am-
plitude produces a purely phase-modulated pulse when the
pulse length is reduced below a certain level [16]—the al-
gorithm pins the RF to its maximum allowed value at all
times during the pulse in attempting to optimize pulse
performance. For longer pulse lengths, the algorithm is
able to converge to a solution using lower, time-variable
values of the amplitude without having to consider larger
RF values. Instead of reducing pulse length by trial-and-
error until constant amplitude pulses are found, it is more
efficient to derive them directly, which is the topic of the
next section. The results of the new procedure for deriving
phase-modulated pulses and their applications in HSQC
and HMBC-type experiments are discussed in a following
section.

2. THEORY AND METHODS

Details of the optimal control procedure, as it relates
to broadband excitation in NMR, and the algorithms de-
veloped so far are discussed in [14, 15, 17]. More general
information on broadband excitation [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13], optimal control theory [18, 19, 20, 21],
and its use in NMR [22, 23, 24, 25] can be found in the
references. In this section, we derive the modifications to
our previous treatment that are required to maximize the
performance of a pulse modulated only in phase.

2.1. Optimal control theory: application to
excitation

We first provide a synopsis describing those aspects of
the methodology that are unaffected by the transition to
a phase-modulated pulse. During the time interval [t0, tp],
we seek to transfer initial magnetization M (t0) = ẑ to the
target final state F = x̂ for a specified range of chemical-
shift offsets and a desired degree of tolerance to RF in-
homogeneity or miscalibration. The trajectories M(t) are
constrained by the Bloch equation

Ṁ = ωe × M . (1)

The effective RF field ωe in angular frequency units (ra-
dians/sec) can be written in the rotating frame as

ωe = ω1(t) [ cos φ(t) x̂ + sin φ(t) ŷ ] + ∆ω ẑ

= ωrf (t) + ∆ω ẑ, (2)

which encompasses any desired modulation of the ampli-
tude ω1, and phase φ of the pulse.

Constraints on the optimization are incorporated into
the formalism using the technique of Lagrange multipli-
ers (see for example, [26]), with a multiplier λi for each
constraint. The vector Bloch equation thus introduces a
vector Lagrange multiplier λ. Some suitable measure of

pulse performance, the cost function Φ, is then defined as
the object of the optimization. One then finds that λ must
also obey the Bloch equation at each time for the cost to
be optimized, with its value at the end of the interval given
by λ(tp) = ∂Φ/∂M .

2.1.1. Application to phase modulation

Since optimal control theory is a generalization (e.g.,
[21]) of the classical Euler-Lagrange formalism, a “hamil-
tonian” h can be defined in terms of λ and the constraints
on the possible trajectories as

h = λ · (ωe × M ) = ωe · (M × λ). (3)

In terms of general controls ui, the final conditions that
are necessary for the cost to be optimal are that

∂h

∂ui
= 0 (4)

at all times throughout the evolution. If Eq. [ 4 ] is not
equal to zero, it represents a gradient giving the propor-
tional adjustment to make in the controls for a more opti-
mal solution.

In our previous work, the controls were equal to ωe, giv-
ing ∂h/∂ωe = M × λ. As noted in the previous section,
since very few spectrometers implement frequency modula-
tion directly, the controls were restricted to the transverse,
(x, y), components represented by ωrf in Eq. [ 2 ]. The z
component of M ×λ was therefore irrelevant in adjusting
the controls.

For a constant amplitude phase-modulated pulse, ω1 in
Eq. [ 2 ] is time-independent and the only control is the
phase, φ. Plugging ωe from Eq.[ 2 ] into Eq.[ 3 ] and setting
∂h/∂φ = 0 gives, together with the previous conditions on
the evolution of M and λ, the following requirements to
optimize the cost:

Ṁ = ωe × M , M (t0) = ẑ (5)
λ̇ = ωe × λ, λ(tp) = ∂Φ/∂M (6)

ωrf · (λMz − Mλz) = 0 (7)

2.1.2. The cost function

The dot product Φ = M(tp)·F is one possible choice for
quantifying the degree to which M(tp) = F , which gives
λ(tp) = F from Eq. [ 6 ] [14, 15, 16]. For alternative cost
functions see Ref. [17]. For any of the cost functions, the
procedure is the same—M and λ obey the Bloch equation,
and they can be calculated at each time for a given pulse.
Mopt(t) will satisfy the stationary condition of Eq. [ 7 ]
when λ opt(t) = 0. For a nonoptimal pulse, the gradient
calculated in Eq. [ 7 ] for each time point of the two tra-
jectories gives the proportional adjustment to make in the
pulse phase φ.
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2.2. Numerical Algorithm
The procedure for optimizing the cost can be incorpo-

rated in the following algorithm:

(i) Choose an initial RF sequence ω
(0)
e .

(ii) Evolve M forward in time from the initial state ẑ.
(iii) Evolve λ backward in time from the target state x̂.
(iv) φ(k+1)(t) → φ(k)(t) + ε ωrf · ( λMz − Mλz )
(v) Repeat steps (ii)–(iv) until a desired convergence of

Φ is reached.

Since the optimization is performed over a range of
chemical-shift offsets and variations in the peak RF cal-
ibration, the gradient used in step (iv) is averaged over
the entire range. Additional details of the averaging pro-
cedure and the choice of stepsize ε for incrementing the
phase in each iteration are described in [14, 15].

3. RESULTS AND DISCUSSION

In our work to date, we have focused on demonstrating
the capabilities of optimal control theory for NMR pulse
design, establishing the effectiveness of the algorithms and
the viability of the resulting pulses. The excitation pulse
is a simple example that characterizes optimal control be-
havior in NMR while minimizing its convolution with any
particular application. This characterization establishes a
foundation for pursuing other applications. We first assess
the performance of the calibration-free phase-modulated
pulse derived by the new algorithm, then consider appli-
cations to two commonly used pulse sequences, illustrating
the advantages of the new pulse.

3.1. Pulse Performance
Pulse performance, in general, depends on the pulse

duration, with pulses of sufficient length giving the op-
timal control algorithm the flexibility to obtain practi-
cally ideal results in many cases. In addition, excitation
(and inversion) efficiency undergoes a steep drop in perfor-
mance below a minimum pulse length [16], which depends
on the parameters defining the optimization. Increasing
pulse length significantly above this minimum provides
only marginal improvement, so the shortest pulse that pro-
vides acceptable performance is the goal.

Choosing 2 ms for the pulse length initially and optimiz-
ing with the new algorithm provided a pulse that trans-
forms 99.9% of initial z magnetization to within 1.5◦ of the
x axis over a resonance offset range of 50 kHz for a constant
RF amplitude anywhere in the range 10–20 kHz (results
not shown). This nearly ideal performance can be traded
for shorter pulse length. Since performance drops rapidly
for shorter pulses, we find that overdigitizing the initial
waveform used in the optimal control procedure gives the
algorithm additional flexibility in finding the best solu-
tion, as discussed in Ref. [17]. Every other point of the
resulting pulse is used as the initial input for generating a

new pulse, and this procedure is continued until a minimal
digitization with acceptable performance is reached. For
a 1 ms pulse length, 320,000 random phases were input
initially (∼ 3 ns per time step). Such a large number of
parameters would be extremely difficult, if not impossible,
to optimize using conventional methods. This “breeder”
pulse resulted in the final 625-point pulse shown in Fig. 1.

3.1.1. Comparison to existing pulses

Although adiabatic pulses accommodate a wide range of
peak power levels, the exceptional bandwidth of adiabatic
inversion for a given peak RF amplitude does not trans-
late to excitation. The orientation of the effective RF field
at the end of an adiabatic excitation pulse, which, ideally
gives the location of the magnetization, is not in the trans-
verse plane for nonzero chemical shift offset. Other exist-
ing excitation pulses [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
provide only limited dual compensation for RF variability
and resonance offset. Moreover, they have not demon-
strated a performance advantage over phase-compensated
hard pulses, so hard 90◦ pulses could be considered the
benchmark for broadband performance in sequences that
are readily phase-corrected.

The theoretical performance of the optimized pulse and
of a conventional hard pulse are illustrated in Fig. 2. Con-
tours of resulting x magnetization, Mx, are plotted as func-
tions of resonance offset and RF amplitude of the pulses
(Fig. 2 A,C). Similarly, the contours of magnetization in
the transverse plane,

√
M2

x + M2
y , are shown for the hard

pulse in comparison (Fig. 2 B). The Mx magnetization ex-
cited by a hard pulse is strongly dependent on offset, with
a narrow bandwidth of approximately ±2.5 kHz for greater
than 99% excitation, using a calibrated RF amplitude of
15 kHz (Fig. 2 A). In most applications, however, exci-
tation pulses are used around evolution periods, in which
case phase deviations can be compensated by a first order
phase correction. Hence, the excitation profile of trans-
verse magnetization,

√
M2

x + M2
y , is more appropriate for

a comparison, resulting in a bandwidth of ±12.5 kHz with
larger than 99% excitation for a calibrated 15 kHz hard
pulse (Fig. 2 B).

Regardless of the application, hard excitation pulses
are significantly affected by RF miscalibrations. On-
resonance, where the performance is best, only 90 percent
of magnitization is brought into the transverse plane if the
pulse amplitude deviates by 25 percent from its nominal
value. For the optimized phase-modulated BEBOP (PM-
BEBOP) pulse of 1 ms duration, the excited magnetization
Mx is better than 99% of the initial z magnetization, M0,
over the targetted factor of 2 variation in the nominal RF
delivered by the coil and resonance offsets of ±25 kHz, as
shown in Fig. 2C. Phase deviations over the optimization
window are typically less than 2–3◦ (cf. Fig. 3), which is
sufficient for the majority of NMR-experiments. In ap-
plications with a high dynamic range, as for example in
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1H-NOESY experiments, this phase behavior might not
be adequate. In such cases, pulses with more stingently
optimized phase behavior (and shorter pulse length) can
be used [15, 17], with the proviso that they also require
more accurate calibration.

Experimental excitation profiles were implemented on
Bruker Avance spectrometers equipped with SGU units for
RF control and linearized amplifiers. For testing the per-
formance of the phase modulated BEBOP pulses, a sample
of 99.96 % D2O was doped with CuSO4 to a final T1 relax-
ation time of ∼500 ms. To reduce effects of B1-field inho-
mogeneity, approximately 40 µl of this solution was placed
in a Shigemi limited volume tube. The maximum RF am-
plitude was calibrated using a square shaped pulse. Offset
profiles were then obtained by varying the offset of the
shaped pulses from −27 kHz to 27 kHz in steps of 1 kHz.
In order to also monitor the B1-field dependence of the
pulses, the experiments were repeated with ±1, ±2, and
±3 dB attenuation relative to a central RF amplitude, cor-
responding to RF amplitudes of 10.0, 11.2, 12.6, 14.1, 15.8,
17.8, and 20.0 kHz. The results are shown in Fig. 4. The
experimental data provide an excellent match with theory
and represent a considerable improvement over the max-
imum attainable performance of a phase-corrected hard
pulse, opening the door to practically calibration-free ex-
citation pulses.

3.2. 2D Applications

The benefits of using PM-BEBOP in practical NMR
applications are well-illustrated by 13C-1H correlated ex-
periments, as e.g., HSQC or HMBC. An important el-
ement of these types of experiment is the sub-sequence
90◦–t1–90◦applied to the 13C spins to encode the frequen-
cies for the first dimension of the 2D spectrum. The lin-
ear phase roll of a hard 90◦ pulse is commonly eliminated
from the first spectral dimension by subtracting a constant
time (equal to 4 t90/π) from t1. Details of the mechanism
responsible for this “rephasing” are straightforward, but
it suffices to note merely that one can expect approxi-
mately phase-corrected performance from hard 90◦ pulses
in HSQC-type sequences, at least in the absence of RF
inhomogeneity.

Two-dimensional spectra were recorded on a Bruker
Avance 500 spectrometer using a ≈500 mM menthol sam-
ple dissolved in CDCl3. Standard HSQC [28, 29] and
HMBC experiments [30, 31] were acquired with variations
in offset, RF amplitude, and the kind of pulses applied on
13C nuclei. The maximum RF amplitude of the Bruker
TXI probehead used corresponds to 14.3 kHz (equivalent
to a 90◦pulse of 17.5 µs). To avoid maximum power for
the shaped pulses, we used slightly lower RF amplitudes of
12 kHz for the nominal power. This scales to a 1.2 ms PM-
BEBOP pulse covering ±20 kHz bandwidth (rather than
the 15 kHz nominal amplitude of the 1 ms pulse shown
in Fig.1, which has a bandwidth of ±25 kHz). The total

sweep width needed for covering the 13C-spectra of men-
thol on a 500 MHz spectrometer is ≈8 kHz. We therefore
decided to record three spectra with 0, 8, and 16 kHz off-
set relative to the center of the 13C-spectral width, leading
to a coverage of offsets corresponding to −4 to 4 kHz, 4
to 12 kHz, and 12 to 20 kHz, respectively. Since spectral
width and offsets are matched, no folding artefacts were
observed.

Based on the procedure described in [27], we also con-
structed a 2.4 ms, 180◦ universal rotation pulse consist-
ing of the original PM-BEBOP pulse appended to its
phase and time-reversed version, resulting in a pulse with
an active bandwidth identical to the pulse from which
it originates. The performance of the resulting inver-
sion/refocusing pulse with respect to offset and RF ampli-
tude is shown in Fig. 5 in comparison to a hard 180◦pulse.
In order to test the robustness of the pulse sequences with
respect to variation in RF amplitude, hard and shaped
pulses were set to 8, 10, and 12 kHz RF amplitude.

For each combination of offset and RF amplitude, three
HSQC and three HMBC experiments were acquired using
only hard pulses, hard excitation but shaped PM-BEBOP-
based 180◦pulses, and only shaped PM-BEBOP excitation
and PM-BEBOP-based refocusing pulses, respectively, on
13C nuclei. In the series of experiments with shaped exci-
tation pulses, the 90◦ flip back pulse after the 13C evolu-
tion period was replaced by the time reversed PM-BEBOP
pulse for optimal transfer Mx → Mz. In Figs. 7 and 8,
representative slices of all 2D-spectra acquired through the
signals corresponding to C6H

eq
6 and C1H7, respectively, are

shown. The slices taken from HMBC spectra are shown in
magnitude mode.

On resonance and with correctly calibrated hard pulses,
the performance of all three HSQC experiments is more or
less identical (c.f. Fig. 7 A). However, as soon as either
RF amplitude or resonance offsets are changed, the signal
intensity of the hard pulse HSQC decreases substantially,
and at offsets larger than 15 kHz the signal falls to ≈ 0 (c.f.
Fig. 7 C-C′′). In addition, large phase rolls are observed
in the indirect dimension.

Most of the signal loss is due to the bad performance
of the uncompensated hard 180◦pulses. As expected from
previous reports [32, 33, 34, 35], replacing the hard in-
version pulses with broadband refocusing pulses recovers
most of the signal over the operating bandwidth of the
pulse. The PM-BEBOP-based refocusing pulse provides
the same bandwidth and tolerance to RF inhomogeneity
or miscalibration as the excitation pulse used in its con-
struction, so that for RF amplitudes 3.5 dB lower than
the nominal value and an 8 kHz offset (c.f. Fig. 7 B′′), the
signal intensity is practically identical to the on resonance
case with calibrated RF amplitude.

In comparison, it is difficult to find broadband adiabatic
refocusing pulses that achieve the performance of the new
pulse shown in Fig. 5. To work properly, they must be suf-
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ficiently adiabatic, which is determined by pulse length,
peak RF, and the frequency sweep range of the pulse (re-
lated to bandwidth). Typical adiabatic pulse shapes re-
quire pulse lengths of 3–4 ms to refocus over a 20% smaller
bandwidth and smaller range of RF tolerance. The best
adiabatic refocusing we could find (matching the 98% refo-
cusing of Fig.5) was achieved with WURST–20 [36]. Using
a 0.5 ms pulse with a 94 kHz frequency sweep as the con-
stituent inversion pulse of the 3π procedure described in
[32] resulted in a 2 ms refocusing pulse which covered the
full 50 kHz bandwidth for peak RF in the range 11.5–22
kHz.

Nevertheless, for larger offsets and lower RF amplitudes
the overall intensity of experiments is also affected by the
decreased performance of hard excitation pulses. At an
offset of 16 kHz and a 3.5 dB miscalibrated RF amplitude,
for example, the signal intensity is reduced by about one
third (Fig. 7C′′). When all carbon pulses are replaced by
PM-BEBOP excitation and refocusing pulses, the signal
intensity is restored also in these cases and virtually iden-
tical performance for the HSQC experiment is observed
for the whole range of offsets and RF amplitude settings
shown in Fig. 7.

The set of experiments recorded for the state of the art
HMBC basically lead to identical results with respect to
signal intensities (cf. Fig. 8). PM-BEBOP pulses appear
to have a utility for excitation and refocusing pulses similar
to adiabatic pulses for RF-compensated inversion, with al-
most no variation in pulse performance over the targetted
offset and RF amplitude ranges.

4. CONCLUSION

We have derived an optimal control algorithm for de-
signing purely phase-modulated pulses. Compared to ear-

lier BEBOP pulses, advantages include simplified imple-
mentation and improved practical performance, since the
output fidelity of phase modulation does not depend on
amplifiers with linear amplitude. We derived a 1 ms pulse
capable of uniformly exciting the entire 200 ppm 13C chem-
ical shift range of a potential 1 GHz spectrometer for a
peak RF amplitude anywhere in the range 10–20 kHz. This
provides an unprecedented combination of bandwidth and
tolerance to RF inhomogeneity. For probes which have a
peak RF in this range, which should cover the vast major-
ity of probes, one needs only to set the RF slightly lower
than the maximum power (typically 3 dB attenuation) to
ensure complete excitation. This removes a significant ob-
stacle to automated NMR, which has been the need to
accurately calibrate the constituent RF pulses in complex
2D pulse sequences. As noted, adiabatic pulses are toler-
ant to a wide range of RF miscalibration only as an inver-
sion pulse. HSQC and HMBC experiments were provided
to show the practical benefits of the new pulse.

BEBOP and PM-BEBOP pulses obtained to date
can be downloaded in Bruker and Varian formats from
http://www.org.chemie.tu-muenchen.de/people/bulu/.
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FIG. 1. Phase modulation of the constant amplitude 1 ms PM-BEBOP pulse. This pulse performs the point-to-point transformation
Iz → Ix over a 50 kHz range of resonance offsets for constant RF amplitude set anywhere in the range 10–20 kHz (see Figs. 2 and 3).
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FIG. 2. Simulated performance of (A,B) a hard excitation pulse and (C) the optimized PM-BEBOP pulse of Fig. 1 plotted as a function
of RF amplitude ν1 and resonance offset ν0. The nominal RF amplitude is 15 kHz. Theoretical transfer from initial z magnetization M0 to

(A,C) Mx and (B) the transverse plane
√

M2
x + M2

y is shown. White areas correspond to transfers larger than 99.5 %, light gray to transfer

between 99.0 and 99.5 % and darker gray to transfer below 99.0 %. While transfer to Mx for the hard pulse has very limited bandwidth and
tolerance to RF variation (A), the phase modulated BEBOP pulse shows almost perfect excitation over the whole offset and RF amplitude
range shown. In readily phase-compensated pulse sequences the transfer of initial magnetization to the transverse plane is important, as
shown in (B) for the hard pulse. The performance of the hard pulse in this case is strongly improved compared to its transfer properties to
Mx, but there is significant loss per applied pulse for amplitudes lower than the nominal 15 kHz.
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FIG. 3. The phase behavior of the optimized PM-BEBOP pulse of Fig. 1 is plotted as a function of RF amplitude ν1 and resonance offset
ν0. Phase deviations from an ideal excitation pulse are shown in 1◦ steps in different shades of gray (see scale to the right). For almost
the entire range of offsets and RF amplitudes, the phase is less than 2◦–3◦, with minor distortions in the 6◦–9◦ range at the lowest RF (10
kHz) in the optimized range.



10 SKINNER, ET AL.

FIG. 4. Excitation profiles for the residual HDO signal in a sample of 99.96% D2O are displayed as a function of resonance offset (1 kHz
increments) and RF power levels applied using the 1 ms PM-BEBOP pulse of Fig. 1. The pulse was applied with constant amplitudes of
10 kHz (+3 dB), 11.2 kHz (+2 dB), 12.6 kHz (+1 dB), 14.1 kHz (0 dB), 15.8 kHz (-1 dB), 17.8 kHz (-2 dB), and 20 kHz (-3 dB). The
experimental performance of the pulse is in excellent agreement with theory, producing practically perfect excitation, Mx > 0.99M0, over
±25 kHz for RF variability within ±33.3% (∼ 6 dB) of the nominal value 15 kHz.
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FIG. 5. Simulated refocusing performance is shown as a function of RF amplitude ν1 and resonance offset ν0 for a hard 180◦pulse
generating the transformations (A) −Mx → Mx, (B) My → My , and (C) Mz → −Mz . The corresponding performance of a shaped 180◦
pulse constructed from the the optimized PM-BEBOP pulse of Fig. 1 using the procedure described in [27] is shown in the second column
of figures. The nominal RF amplitude is 15 kHz in all cases. White areas correspond to transfers larger than 98.0 %, light gray to transfer
between 95.0 and 98.0 %, gray to lower positive transfer, and dark gray to transfer where the resulting magnetization is still negative. While
refocusing for the hard pulse has very limited bandwidth and tolerance to RF variation, the pulse constructed from the PM-BEBOP pulse
shows very good refocusing properties over the whole offset and RF amplitude range shown.
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FIG. 6. HSQC pulse sequences used for the comparison of signal intensities shown in Fig. 7. The reference HSQC based on hard pulses is
shown in (A). In the sequence shown in (B) all 13C-pulses are replaced by PM-BEBOP-based excitation and refocusing pulses. PM-BEBOP
pulses are schematically shown as rectangular pulses (representing constant RF amplitude) containing a wavy line (representing phase-
modulation). Phase and/or time reversals are illustrated by vertical and/or horizontal mirroring of the wavy lines in the boxes, respectively.
Phases are ϕ1 = x, ϕ2 = x,−x, ϕ3 = x, x,−x,−x, ϕ4 = x, x, x, x,−x,−x,−x,−x, ϕrec = x,−x, x,−x,−x, x,−x, x. G1, ϕ1, ϕ2, and ϕrec

are cycled ± according to echo/antiecho acquisition scheme. If not stated otherwise, all pulses have x phase.
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FIG. 7. Traces through the C6-H
eq
6 signal of several HSQC spectra of menthol in CDCl3 recorded with various offsets, RF amplitudes,

and 13C pulses. RF amplitudes were 12 kHz (A,B,C), 10 kHz (A′,B′,C′), and 8 kHz (A′′, B′′,C′′) and on-resonant offsets were set to 0 kHz
(A-A′′), 8 kHz (B-B′′), and 16 kHz (C-C′′) (see main text for details). For each offset and RF amplitude combination, the traces for three
different HSQC experiments using different 13C-pulses (see Fig. 6) are shown: only hard pulses (left), hard excitation and PM-BEBOP-
based shaped 180◦pulses (middle), and only PM-BEBOP excitation, and PM-BEBOP-based refocusing pulses (right). For B′′, 2D-regions
are also shown for the three different experiments for a better demonstration of the spectral quality. The circled signals correspond to the
above traces. In the 2D-regions of spectra acquired using hard pulses, phase distortions can clearly be seen. These phase distortions have
been corrected for all traces shown above in order to have a fair comparison of the intensities present in the various spectra.
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FIG. 8. Traces through the C1-H7 signal in HMBC spectra analogous to the traces of HSQC spectra shown in Fig. 7. The replacement of
hard 180◦ pulses by the BEBOP-constructed 180◦ pulse significantly improves performance (see also [32, 33, 34, 35]). Further improvements
can be seen if both PM-BEBOP excitation and PM-BEBOP-based refocusing pulses are applied to 13C : signal intensities basically stay
constant for all RF amplitudes and offsets recorded.


