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Abstract

The limits of polarization transfer efficiency are explored for systems consisting of three isotropically

coupled spins 1/2 in the absence of relaxation. An idealized free evolution and control Hamiltonian

is studied, which provides an upper limit of transfer efficiency (in terms of transfer amplitude and

transfer time) for realistic homonuclear spin systems with arbitrary Heisenberg-type coupling con-

stants J12, J13, and J23. It is shown that optimal control based pulse sequences have significantly

improved transfer efficiencies compared to conventional transfer schemes. An experimental demon-

stration of optimal polarization transfer is given for the case of the carbon spin system of fully 13C

labelled alanine at low magnetic field.
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1 Introduction

Polarization transfer between coupled spins forms the basis of many two-dimensional experiments

[1]. Although a large number of pulse sequences have been developed to effect transfer of polarization

or coherence, many fundamental questions of both theoretical and practical interest are still open.

Here we address the problem of optimal transfer efficiency in systems consisting of three isotropically

coupled spins 1/2 in the absence of relaxation. This scenario is relevant for homonuclear spin systems

in liquid state NMR, where the coupling between spins is characterized by isotropic (Heisenberg-

type) coupling terms [1, 2], see Theory section. Here, we use the term transfer efficiency to reflect

both the transfer amplitude and the required transfer time [2]. Ideally, the transfer amplitude

should be as large as possible and the transfer time should be as short as possible, in order to reduce

relaxation losses. It is well known that in systems consisting of two homonuclear spins 1/2, TOCSY-

type (Total Correlation Spectroscopy) transfer experiments [3-5] are faster and hence more efficient

than COSY-type (Correlation Spectroscopy) experiments [6]. TOCSY sequences are designed to

suppress offset terms and to create isotropic mixing conditions. For an isolated pair of spins 1/2, free

evolution under the effective isotropic mixing Hamiltonian results in complete polarization transfer

during a mixing time of 1/(2J12), where J12 is the coupling constant between the two spins.

For spin systems consisting of three or more coupled spins, the situation is more complicated.

Here, the TOCSY transfer efficiency strongly depends on the relative size of the coupling constants

[2, 5, 7-9]. For example, under isotropic mixing conditions, the transfer efficiency between two spins

with a direct coupling constant J12 is very inefficient if the coupling constants J13 and J23 to a third

spin have twice the magnitude and the opposite sign of the direct coupling, i.e. if J13 ≈ J23 ≈ −2J12

[2, 7]. One of the first approaches to improve the transfer efficiency and to excert some control

over the evolution was based on selective mixing sequences [2, 5, 10-23], which (in contrast to

TOCSY) are also known as TACSY (Tailored Correlation Spectroscopy) experiments [2, 5]. The

polarization transfer properties of the large number of suggested TOCSY and TACSY experiments

can be conveniently classified based on the corresponding effective coupling topologies It was shown

that selective TACSY transfer is always more efficient than TOCSY transfer, if the magnitude of at

least one of the indirect couplings (|J13| or |J23|) is smaller than the magnitude of the direct coupling

|J12|. If the magnitudes of both indirect couplings to a third spin are significantly larger than the

magnitude of the direct coupling between the two spins of interest (i.e. |J13/J12| ≈ |J23/J12| > 2), in

most cases a two-step sequential TACSY transfer via the third spin is more efficient. TOCSY transfer
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is superior to TACSY and sequential TACSY transfer only if the indirect couplings are large and have

the same sign as the direct coupling between the spin pair of interest (J13/J12 ≈ J23/J12 > 2) [2, 5].

However, conventional COSY-, TOCSY-, and TACSY-type sequences are only specific examples and

do not represent the most general type of polarization transfer experiments.

The goal of this paper is to explore the physical limits of polarization transfer efficiency and

to compare these limits with the efficiency of conventional experiments. Such theoretical limits

provide an important benchmark for all present and future pulse sequences. On the one hand

they show in which cases these limits are already reached by conventional experiments and hence

where all additional efforts to find further improvements in transfer efficiency would be futile. On

the other hand, they show where conventional approaches are far from the optimum and where

it is worth to invest in the development of better practical pulse sequences. Finding the most

efficient polarization transfer sequence is a problem in optimal control [24]. So far, an analytical

characterization of optimal transfer efficiency is only known for the case of isolated two-spin systems

[25-27]. Here, we use the optimal-control based numerical optimization algorithm (GRAPE) [28],

which has previously been successfully used for a large number of applications, including broadband

pulses [29-32], pattern pulses [33], solid-state NMR applications [34-36], logical gates for quantum

information processing [28, 37] and relaxation-optimized coherence transfer [28]. Similar numerical

algorithms have been applied in the study of laser control of molecular vibrations and reactions

[38-44] and for the design of band-selective pulses in MRI applications [45-47]. For the case of two

coupled spins in the absence of relaxation, it has been demonstrated that the pulse sequences found

by the GRAPE algorithm closely approach the analytically derived physical limits [25, 27, 28]. Here,

we use the GRAPE algorithm to explore the limits of polarization transfer in isotropically coupled

three-spin systems.

2 Theory

We focus on polarization transfer I1z → I2z between two spins that are part of a system consisting

of three spins 1/2 in the absence of relaxation. The state of the spin system is characterized by the

density operator ρ(t), and its equation of motion is the Liouville-von Neuman equation [1]

ρ̇(t) = −i [(Ho +
M
∑

k=1

uk(t)Hk), ρ(t)], (1)
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where Ho is the free evolution Hamiltonian, Hk correspond to control fields and u1(t), u2(t), . . . , uM (t)

represent the control amplitudes that can be varied as a function of time. In practice, the free evo-

lution Hamiltonian for a system of three coupled homonuclear spins in isotropic solution is

Hreal
o = Hiso + Hoff (2)

with the isotropic coupling term

Hiso =
∑

m<n

2πJmn(ImxInx + ImyIny + ImzInz) (3)

and the offset term

Hoff =
3

∑

m=1

2πνmImz. (4)

The isotropic coupling respresented by Hiso is also known as Heisenberg coupling. Experimentally,

in homonuclear spin systems only two control amplitudes (ux(t) and uy(t)) are available, which

correspond to x or y pulses applied simultaneously to all spins:

Hreal
control = 2π ux(t)

3
∑

m=1

Imx + 2π uy(t)
3

∑

m=1

Imy. (5)

In the limit of identical offsets (ν1 = ν2 = ν3), no selective rotations of the individual spins are

possible. However, if the three spins have different offsets, selective rotations are possible. In order

to explore the limits of transfer efficiency, we first focus on the following idealized setting (which in

practice can only be approximated), where we assume that arbitrarily fast selective pulses can be

selectively applied to the individual spins and where the chemical shifts of the spins have already

been eliminated in a first averaging process. The corresponding free evolution and control terms of

this idealized Hamiltonian are given by

Hideal
o = Hiso (6)

and

Hideal
control = 2π

3
∑

m=1

{umx(t)Imx + umy(t)Imy}. (7)

Hence, in this idealized setting, the six control amplitudes

u1(t) = u1x(t), u2(t) = u1y(t), u3(t) = u2x(t), u4(t) = u2y(t), u5(t) = u3x(t), u6(t) = u3y(t) (8)

are assumed to be available.

Now we consider the problem to find the optimal amplitudes that steer a given initial density

operator ρ(0) = I1z in a specified time τ to a density operator ρ(τ) with maximum overlap to the
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target operator I2z. For any given control sequence, the normalized polarization transfer amplitude

T12(τ) for the transfer I1z → I2z can be defined as [2, 5]

T12(τ) =
1
2

tr{I2zρ(τ)}. (9)

In the GRAPE optimizations [28] of the pulse sequences (represented by the control amplitudes

uk(t)), the transfer time τ is discretized in finite time intervals ∆t and during each interval the

control amplitudes are constant, e.g. during the jth step the amplitude uk(t) of the kth control

Hamiltonian is given by uk(j). For each transfer time τ , the transfer amplitude T12(τ) is maximized

using the gradient [28]
δT12(τ)
δuk(j)

= − i ∆t tr{Hk [ρj , λj ]}, (10)

where λ(τ) = I2z and the time evolutions of the density operator ρ(t) and of the backward propagated

target operator λ(t) are governed by the same equation of motion (Eq. 1). Starting from random

functions uk(t), the control amplitudes were optimized using a conjugate gradient algorithm based

on Eq. (10) [28]. For the coupling constants J13 = J23 = −2.4J12, Fig. 1 shows an example of

optimized control amplitudes u1(t) = u1x(t), . . . u6(t) = u3y(t) for a transfer time τ = 0.32J−1
12 .

We denote the graphical respresentation of the maximum achievable transfer amplitude T12(τ)

as the TOP (time optimal pulse) curve [27]. An example of a numerically optimized TOP curve is

shown in Fig. 2 (solid curve) for the case J13 = J23 = −2.4J12.

The minimum time τ∗ for which the maximum transfer amplitude T12 is achieved is a function

of the coupling constants [27]. If J12 $= 0 or if both J13 and J23 are non-zero, the spin system is

fully controllable and the maximum transfer amplitude is T12(τ∗) = 1, corresponding to the unitary

bound [48, 49].

As a convenient measure for the efficiency of polarization transfer between spins I1 and I2 in

terms of transfer amplitude and duration, here we use the standard transfer efficiency η defined as

[2, 5]

η = max
τ>0

{

Tkl(τ) exp
(

−τ |J12|
)

}

. (11)

This transfer efficiency η represents the maximum of the exponentially damped TOP curve (c.f.

dashed curve in Fig. 2), where the damping constant τdamp = |J12|−1 corresponds to (twice) the ideal

TOCSY transfer time that would be found if spins I1 and I2 would form an isolated pair of coupled

spins. (For alternative definitions of transfer efficiency, see [2].) The time for which the damped

TOP curve achieves its maximum is denoted as τmax. It can be conveniently determined numerically
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and is similar to (but cannot exceed) τ∗ defined above. Note that η and τmax depend only on the

relative coupling constants J13/J12 and J23/J12 [2]. Hence for a general three-spin system, both

η(J13/J12 , J23/J12) and τmax(J13/J12 , J23/J12) can be respresented by two-dimensional contour

plots.

3 Transfer Efficiency Maps

For −5.2 ≤ J13/J12 ≤ 5.2 and −5.2 ≤ J23/J12 ≤ 5.2, we calculated 53 × 53 = 2809 TOP curves

using the optimal control based GRAPE algorithm [28]. For each TOP curve, the resulting transfer

efficiency η (c.f. Eq. 11 and Fig. 2) was determined and the resulting optimal control based ηOC

map is shown in Fig. 3A. For comparison, the transfer efficiency map ηTOCSY of isotropic mixing

[3, 5, 7] is shown in Fig. 3B. Fig. 3C shows the (constant) transfer efficiency ηTACSY = 0.622 of

a (IOO-type) TACSY experiment [2, 5], where the couplings to spin I3 are effectively eliminated,

resulting in the isotropic mixing transfer dynamics of an isolated two-spin system. Fig. 3D shows

the best transfer efficiency ηtwo−step achievable by a two-step sequential TACSY transfer consisting

of a selective (OIO-type TACSY) isotropic mixing transfer between spins I1 and I3 (while decoupling

spin I2) followed by a selective (OOI-type TACSY) isotropic mixing transfer between spins I3 and

I2 (while decoupling spin I1) [2, 5]. Cross sections along the lines J13 = J23 and J13 = −J23 of

these efficiency maps are shown in Fig. 4. As expected, for all combinations of coupling constants,

ηOC was found to be at least as large as ηTOCSY , ηTACSY , and ηtwo−step. In the case of isotropic

mixing, the transfer efficiency ηTOCSY reaches ηOC only in the special case where J13 = J23 = 0

and also closely approaches ηOC for J13 = J23 ≈ 4J12. However, for most combinations of coupling

constants, ηTOCSY is significantly smaller than ηOC . If the magnitude of at least one of the indirect

couplings (|J13| or |J23|) is on the order of or smaller than |J12|, we find ηOC = ηTACSY . Hence,

for small indirect couplings, the single-step TACSY transfer turns out to be the optimal transfer

strategy. On the other hand, in the limit where both indirect couplings are significantly larger than

the direct coupling, the two-step TACSY transfer approaches the optimum transfer efficiency.

The symmetry properties of the conventional sequences have been previously discussed in detail

[2, 5]. The only symmetry element found in the ηOC map is a trivial reflection symmetry around the

diagonal (J13 = J23). This is a direct result of the fact that for any pulse sequence with a transfer

amplitude T12(t) from I1z to I2z, the time-reversed pulse sequence will provides the same transfer

amplitude from I2z to I1z, i.e. T21(t) = T12(t).
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The optimal transfer time τmax for the damped TOP curve is shown in Fig. 5 as a function of

J13/J12 and J23/J12. If the magnitude of one of the indirect coupling constants is smaller than the

magnitude of the direct coupling, the transfer time is identical to the transfer time of the TACSY

experiment. However, if the magnitudes of both indirect coupling constants are larger than |J12|,

the optimal transfer time is markedly reduced.

4 Experimental

The presented theoretical limits of polarization transfer are relevant for many applications of prac-

tical interest. For example in biological applications, homonuclear spin systems consisting of three

coupled 1H spins occur in proteins and nucleic acids. For such practical applications, the idealized

model considered here can provide only upper bounds for the largest achievable transfer efficiency

because additional constraints have to be take into account. (I) The fidelity and duration of spin-

selective pulses depends on the size of chemical shift difference in a given spin system. For small

or vanishing chemical shift differences (e.g. between geminal protons), spin-selective control is very

limited or even impossible. (II) In most practical applications, pulse sequences are required that

work not only for a given spin system with known chemical shifts but that cover finite chemical

shift ranges typically found in specific applications. (III) In many applications, typical ranges of

coupling constants need to be taken into account. (IV) The sequences should be robust with respect

to typical variations of rf amplitudes due to imperfect pulse calibration and rf inhomogeneity. (V)

Optimal pulse sequence performance requires high standards for spectrometer hardware with respect

to pulse switching time, linear amplifiers and constant rf power during long irradiation periods. (VI)

Based on results for heteronuclear spin systems [52-55], it is expected that experiments optimized

for the specific relaxation properties of a given sample may have the best sensitivity. (VII) In many

experimental settings, spin systems consisting of more than three coupled spins are relevant.

Consideration of all these issues is beyond the scope of this paper and require further studies to

yield pulse sequences for practical applications. In this section, we demonstrate how some of these

problems (I, II, IV, V) can be addressed and present an experimental example illustrating on the

one hand the relation between ideal and practical pulse sequences and on the other hand significant

gains compared to conventional approaches.

For an experimental demonstration of optimal control based polarization-transfer sequences,
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we chose fully 13C labelled alanine as a model compound. At low field (62.5 MHz 13C Larmour

frequency) the offset differences of the Cβ , C′, and Cα resonances are large enough (on the order

of kHz) to allow for fast spin-selective rotations. On the other hand, effective isotropic mixing

conditions can be approximated because the offset frequencies are smaller than the availabel rf

amplitude. Alanine was dissolved in D2O and the experiments were performed at a temperature

of 27◦C using a Bruker AC 250 spectrometer with modern SGU units for rf control. The 1H spins

were decoupled and the nuclear spins of Cβ , C′, and Cα correspond to I1, I2, and I3, respectively.

In this isotropically coupled three-spin system, the experimentally determined coupling constants

are J12 = −1.6 Hz, J13 = 33.7 Hz, and J23 = 59.6 Hz. For this combination of coupling constants,

the numerically determined ideal TOP curve for polarization transfer from spin I1 (Cβ) to I2 (C′) is

shown in Fig. 6 A (solid curve), assuming six independent and unlimited control amplitudes, c.f. Eqs.

(7) and (8), which were digitized in steps of 30 µs. The minimum time to achieve full polarization

transfer is τ∗ ≈ 18.9 ms. This is about 20% shorter than the total transfer time of an ideal sequential

two-step TACSY sequence, which requires a minimum transfer time of 1/(2J13) + 1/(2J23) = 23.2

ms for complete transfer [2].

In our experiments, the 13C transmitter frequency was set in the center between the Cβ and C′

resonance frequencies, resulting in offsets ν1 = −4941.7 Hz, ν2 = 4941.7 Hz, and ν3 = − 2837.7

Hz. For these offset frequencies, we also calculated the more realistic TOP curve (dashed curve in

Fig. 6 A), assuming only the two non-selective and unlimited control amplitudes ux and uy, c.f.

Eq. (5). Here the minimum time to achieve full polarization transfer is τ∗ ≈ 20.7 ms. Due to the

relatively large offset differences in the alanine spin system, the TOP curve based on non-selective

pulses closely approaches the ideal TOP curve.

In practice, rf amplitudes are not unlimited and pulse sequences should be robust with respect

to rf inhomogeneity and variations of chemical shifts [28]. We therefore also optimized five purely

phase-modulated pulse sequences (with durations τ of 19.9 ms, 26.7 ms, 28.4 ms, 39.8 ms, and 56.8

ms) with a constant rf amplitude
√

u2
x + u2

y of 10.125 kHz for offset ranges ν1 = − 4941.7 ± 170

Hz, ν2 = 4941.7 ± 170 Hz, and ν3 = −2837.7 ± 170 Hz and a Gaussian rf amplitude distribution

with a full width at half height of 10 %. The resulting pulse shapes are available for download

in Bruker format on the website www.org.chemie.tu-muenchen.de/glaser. For example, the phase

modulation ϕ(t) of the optimized sequence with a duration of 19.9 ms is shown in Fig. 7A. In Fig. 6

A, the resulting transfer amplitudes (averaged over all combinations of offsets and rf amplitudes for
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which polarization transfer was optimized) are represented by solid circles. The maximum transfer

amplitude of 0.97 is reached for a mixing time of about 26.7 ms. As expected, the ideal TOP curve

for six selective control fields (solid curve) forms an upper bound for the more realistic TOP curve

for two non-selective control fields, which in turn forms an upper bound for the transfer amplitudes

of the robust practical sequences (solid circles).

Experimental polarization transfer amplitudes were measured using standard procedures [5]. The

initial density operator ρ(0) = I1z was prepared by complete saturation of the 13C spins followed

by selective heteronuclear Hartmann-Hahn transfer from Hβ to Cβ [50, 51] and a 90◦−y pulse that

flips I1x to I1z. After applying a polarization transfer sequence of duration τ to ρ(0), the resulting

polarization I2z (C′) is rotated to I2x by a 90◦y pulse and a spectrum is recorded. Sections of

experimental spectra showing the C′ signal for the optimized pulse sequences are shown in Fig. 6

B (solid curves). The normalized experimental transfer amplitude T12 is given by the integrated

signal intensity of spin I2 divided by the integrated signal intensity of spin I1 which results if a

90◦y pulse is applied directly to ρ(0) = I1z. In Fig. 6 A, the experimental polarization transfer

amplitudes between spins I1 (Cβ) and I2 (C′) resulting from the optimized practical pulse sequences

are represented by open circles. A reasonable match is found between experimental (open circles)

and simulated (solid circles) polarization transfer amplitudes. The remaining discrepancies can be

attributed to experimental imperfections and relaxation effects which were not taken into account

in the present simulations.

For comparison, Fig. 6 A also shows simulated (solid squares) and experimental (open squares)

transfer amplitudes for the alanine spin system under the TOCSY sequence DIPSI-2 [56] with the

same rf amplitude of 10.125 kHz as used for the optimal control based sequences. In Fig. 6 B the

C′ signal (dashed curves) is shown as a function of the mixing time. For this rf amplitude, the cycle

time of DIPSI-2 is 2.84 ms and the periodic phase modulation of seven DIPSI-2 cycles corresponding

to a total mixing time of 19.9 ms is shown in Fig. 7B. In order to guide the eye, in Fig. 6 A the

simulated transfer amplitudes (solid squares) for integer multiples of the cycle time were connected

by a smooth curve using a qubic spline fit (dash-dotted curve). Again, a reasonable match is found

between simulated and experimental DIPSI-2 transfer functions T12(τ), which show two pronounced

maxima at τ = 19.9 ms and τ = 39.8 ms. For these two maxima, the simulated (and experimental)

transfer amplitudes are 0.61 (0.62) and 0.66 (0.64). In comparison, the corresponding simulated

(and experimental) transfer amplitudes of the optimized practical pulse sequence with durations
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τ = 19.9 ms and τ = 39.8 ms are 0.82 (0.80) and 0.97 (0.89), respectively. Hence, in the simulations

(experiments) at τ = 19.9 ms a gain of 34 % (29 %) is found and at τ = 39.8 ms a gain of 47 %

(39%).

5 Discussion

The tools of optimal control make it possible to explore the limits of polarization transfer in non-

trivial spin systems. Although the GRAPE algorithm is not guaranteed to converge to a globally

optimal pulse shape, experience with cases where analytical solutions are known [28] suggests that

the presented efficiency maps not only provide the currently best known transfer efficiencies but also

closely approach the theoretical limits. On the one hand, the presented results provide a benchmark

for all known or future pulse sequences. On the other hand, they motivate the search for a detailed

analytical characterization of the optimal transfer strategy. The presented results for polarization

transfer I1z → I2z also apply to transfer of in-phase coherence I1x → I2x or I1y → I2y because e.g.

I1x can be flipped to I1z by a hard pulse which takes a neglible amount of time. For cases where the

optimal efficiency is larger than the single-step TACSY transfer, a different optimal pulse sequence

corresponds to each combination of relative coupling constants J13/J12 and J23/J12. This also mo-

tivates the search for optimal pulse sequences for ranges of relative coupling constants and chemical

shift ranges that are characteristic for specific applications. For example, homonuclear spin systems

in proteins and nucleic acids are candidates for more efficient polarization-transfer experiments to

establish chemical shift correlations and to quantify couplings. For such applications, the presented

transfer efficiencies form an upper limit for practical pulse sequences which must rely on chemical

shift differences to effect selective rotations of individual spins. This was demonstrated theoretically

and experimentally for the 13C spin system of fully 13C labelled alanine, where we also designed

pulse sequences that are robust with respect to realistic rf inhomogeneities and variations of chemi-

cal shifts. Significant gains in polarization transfer amplitude were found compared to conventional

TOCSY experiments, opening new avenues for efficient tailor-made homonuclear polarization trans-

fer experiments. A characteristic of optimal control-based pulse sequences is that they do not consist

of a basic pulse sequence which is repeated throughout the entire mixing time as in conventional

TOCSY experiments, c.f. Fig. 7 A and B [3-5]. Instead, at each point in time the optimum pulse is

applied to steer the spin system to the desired target state. In this study, we did not take specific

relaxation mechanisms into account, to explore the limits of homonuclear time-optimal polarization
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transfer in the most general setting. However, similar to the case of heteronuclear experiments [52-

55], it is expected that the development of homonuclear relaxation-optimized transfer schemes will

lead to further improved pulse sequences.
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Figure Captions

Figure 1: Example of a numerically optimized pulse sequence, consisting of the six control ampli-

tudes u1x(t), u1y(t), u2x(t), u2y(t), u3x(t), and u3y(t) with a total duration τ = 0.32 J−1
12 . The pulse

sequence was digitized in 200 time steps of duration ∆τ = 0.016 J−1
12 .

Figure 2: Example of a TOP (time-optimal pulse) curve for the case J13 = J23 = −2.4J12,

representing numerically optimized transfer amplitudes T12 as a function of transfer time τ . The

optimum transfer efficiency ηOC (dottet line) is defined as the maximum of the exponenially damped

TOP curve (dashed curve, c.f. Eq. 11).

Figure 3: In a system consisting of three isotropically coupled spins 1/2, the numerically optimized

transfer efficiencies (A) ηOC , (B) ηTOCSY , (C) ηTACSY , and (D) ηtwo−step are shown for polarization

transfer I1z → I2z.

Figure 4: Cross sections of the transfer efficiency maps shown in Fig. 3 for (A) J13 = J23, J12 = 1

Hz, (B) J13 = −J23, J12 = 1 Hz.

Figure 5: The optimal transfer time τmax for the damped TOP curves is shown in units of J−1
12 as

a function of J13/J12 and J23/J12.

Figure 6: (A) Simulated (solid symbols and smooth curves) and experimental (open symbols)

polarization transfer amplitudes T12 as a function of the transfer time τ for the homonuclear 13C spin

system of fully 13C labelled alanine. Spins I1, I2, and I3 correspond to Cβ , C′, and Cα, respectively.

Solid curve: ideal TOP curve for six spin-selective and unlimited control amplitudes, c.f. Eqs. (7)

and (8). Dashed curve: more realistic TOP curve based on two non-selective and unlimited control

amplitudes ux and uy, c.f. Eq. (5). Solid and open circles: theoretical and experimental transfer

amplitudes for optimal control based, purely phase-modulated pulse sequences with a constant rf

amplitude of 10.125 kHz optimized for offset variations of ± 170 Hz and rf inhomogeneity. Solid

and open squares: simulated and experimental TOCSY transfer amplitudes for DIPSI-2 with a

constant rf amplitude of 10.125 kHz. The simulated TOCSY transfer amplitudes (solid squares) are

connected by a smooth curve (dash-dotted curve) to guide the eye. (B) Sections of experimental

spectra showing the C′ signal of alanine after polarization transfer from the Cβ . The duration τ of

16



the transfer sequence is given in multiples of the DIPSI-2 cycle time τc =2.84 ms. Dashed spectra

correspond to DIPSI-2 transfer and solid spectra correspond to optimal control based practical

polarization transfer sequences.

Figure 7: (A) Non-periodic phase modulation ϕ(t) of a pulse sequence with a constant rf amplitude

of 10.125 kHz and duration τ= 19.9 ms optimized for rf inhomogeneity and offset variations of ±170

Hz around the offsets of 13C spins of alanine at a 13C transmitter frequency of 62.5 MHz. (B) Periodic

phase modulation of a conventional DIPSI-2 mixing sequence also with a constant rf amplitude of

10.125 kHz and a total mixing time of 19.9 ms. Each of the seven DIPSI-2 cycles (separated by

vertical dotted lines) has a duration of 2.84 ms.
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