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Abstract— Motivated by applications in quantum computing
and quantum control, we consider the task of maximizing
the trace function Re(tr (C†UAU†)) on the Lie group of N -
fold tensor products of special unitary (2×2)-transformations.
In order to approach this highly non-convex optimization
problem, a new object, the localC-numerical rangeWloc(C, A),
is introduced and its geometry is studied. We first present
examples that illustrate the rather complex geometric structure
of the local C-numerical range. It is shown that, in contrast
to the ordinary C-numerical range, Wloc(C, A) is in general
neither star-shaped nor simply connected. The equivalence of
finding bounds on the size ofWloc(C, A) and maximizing the
above trace function is derived. We then describe and analyse
two intrinsic optimization methods to tackle these problems:
(a) a gradient flow with an Euler step discretization scheme
and (b) a Jacobi-type algorithm. Explicit step size selections
are given for which the gradient algorithm converges to the set
of critical points. Finally, numerical experiments are presented.

Index Terms— C-Numerical Range, Quantum Control,
Quantum Computing, Optimization on Lie Groups.

I. INTRODUCTION

Before describing in more precise terms the specific op-
timization task which will be studied in this paper, we first
recall some basic facts from quantum mechanics. The state
of a closed quantum system is represented by a normalized
elementψ, the state vector, in a complex Hilbert spaceH.
Similarly, the state of an ensemble of a finite number of
identical and non-interacting quantum subsystems requires a
representation by a positive semidefinite selfadjoint operator
A on H, normalized totr (A) = 1. It is called the den-
sity operator of the ensemble. Moreover, an observable is
represented by a selfadjoint linear operator onH. The time
evolution of the state is governed by the associated unitary
propagatorU(t) in the sense

ψ(t) = U(t)ψ and A(t) = U(t)AU(t)†, (1)

respectively, whereU† := Ū⊤ denotes conjugate transpose.
The dynamics of the unitary operatorU(t) is in turn de-
scribed by the corresponding Schrödinger equation, i.e.

U̇ = −iHU, U(0) = IdH. (2)

Here the Hermitian operatorH is called the joint Hamilto-
nian. In this paper, we focus on ensembles ofN coupled
spin-12 particles orN -qubits. In this specific case, the joint

Hilbert state space is formed by theN -fold tensor product
over all single spin-12 particle spaces, i.e.

H = C
2 ⊗ C

2 ⊗ · · · ⊗ C
2 ∼= C

2N

,

endowed with its natural Hermitian inner product. Moreover,
we assume that the Hamiltonian operatorH decomposes as

H = Hd +

2N∑

k=1

vk(t)Hk, (3)

whereHd :=
∑

k<l Jklσk,zσl,z,

Hk :=






σk,x for k = 1, . . . , N

σ(k−N),y for k = N + 1, . . . , 2N

andσk,α denotes theN -fold Kronecker product

σk,α :=I2 ⊗ · · · ⊗ I2 ⊗ σα ⊗ I2 ⊗ · · · ⊗ I2,

k =1, . . . , N, α ∈ {x, y, z}

with the Pauli matrices

σx :=

[
0 1
1 0

]
, σy :=

[
0 −i
i 0

]
, σz :=

[
1 0
0 −1

]

appearing at thek-th position. Such Hamiltonians describe
a sufficiently rich class of physically relevant situations. The
time-dependent real-valued functionsvk define the controls
that are accessible to the experimenter, while the operatorHd

describes the spin-spin interactions, e.g. of Ising-type.Thus,
we refer toHd andHk as drift and control Hamiltonians,
respectively. The real scalarsJkl denote the weak coupling
constants. Summarizing, the Schrödinger equation (2) in our
situation of interest has the explicit form

U̇ = −i

(
Hd +

2N∑

k=1

vk(t)Hk

)
U, U(0) = I2N . (4)

The solutionsU(t) thus evolve on the compact Lie group
SU(2N ) of unitary (2N × 2N )-matrices with determinant
detU = 1.

In a quantum ensemble, whose state evolution is repre-
sented by a density operatorA(t) = U(t)AU(t)†, the expec-
tation value of an observableC is determined by the trace
function Re(tr (C†U(t)AU(t)†)). In other settings,C may
denote a desired target operator, whose best approximation



by A(t) = U(t)AU(t)† is sought for. For instance, in co-
herent ensemble spectroscopy, the maximum signal intensity
that is experimentally achievable by transferring an initial
operatorA = A(0) to a target operatorC is bounded from
above by the maximal value ofRe(tr (C†U(t)AU(t)†)).
Note, that in such applications, the matricesC,A are no
longer confined to be Hermitian. For further details on
quantum mechanics of coupled spin systems and coherent
ensemble spectroscopy see e.g. [5].

Recall, that the reachable setR of (4) is precisely the
union of all trajectories of (4), i.e.R := {U(T ) | T ≥ 0},
whereU(t) is a solution of (4). Thus, the above optimal
control problem can be reformulated as an optimization task
on the closureR̄ of the reachable set of (4):

max f(U) := Re(tr (C†UAU†)),

subject to:U ∈ R̄.
(5)

It is a well-known fact from nonlinear control theory [10],
that the closure of the reachable sets of the Schrödinger
equation (4) are closed Lie subgroups ofSU(2N ). Thus,
the above optimization problem is equivalent to maximizing
the function f(U) = Re(tr (C†UAU†)) over a closed
Lie subgroup ofSU(2N ). In [14] it is shown that the
Schr̈odinger equation (4) is controllable for spin systems,
whose interactions form a connected graph, e.g. Ising-type
couplings. Problem (5) then corresponds to maximizing
Re(tr (C†UAU†) over the full unitary groupSU(2N ). For
a detailed discussion of this case and a study of gradient
algorithms see [7], [8].

In this paper we focus on the other extreme case when
all couplings vanish and one is left with so-called local
controls, i.e.Hd = 0 in (4). Here, the reachable set of (4)
is easily characterized as the Lie subgroup generated by the
one-parameter subgroupst 7→ exp(−itHk), k = 1, . . . , 2N .
As these span theN -fold Kronecker product of special
unitary (2 × 2)-matrices, the reachable set is equal to the
Lie subgroup

SUloc(2
N ) := {U1 ⊗ · · · ⊗ UN | Uk ∈ SU(2)}.

Following standard terminology from quantum computing
we refer toSUloc(2

N ) as the Lie subgroup oflocal unitary
operations. Problem (5) for local unitary operations can thus
be stated as the

Local Subgroup Optimization Problem (LSOP)

max f(U) := Re(tr (C†UAU†)),

subject to:U ∈ SUloc(2
N )

(6)

The LSOP is of considerable interest in areas such as quan-
tum control. In particular, in coherent ensemble spectroscopy
– as we mentioned earlier – it is equivalent to the task of
maximizing the experimentally achievable signal intensity
using only local unitary operations. Moreover, the Euclidean
distance betweenC andUAU† is

‖C−UAU†‖2 = ‖C‖2 + ‖A‖2 − 2Re(tr (C†UAU†)), (7)

where in the sequel‖ · ‖ always denotes the Frobenius
norm, i.e.,‖C‖ =

√
tr (CC†). Thus minimizing the distance

betweenC andUAU† is the same as maximizing the trace
function f . Therefore, the LSOP is also closely related to
the task of computing entanglement measures in quantum
information theory, which are induced by the Euclidean
distance.

In the subsequent sections the LSOP is related to the
geometry of theC-numerical range ofA and two numerical
algorithms for solving it are presented: (a) a gradient method
and (b) a Jacobi-type algorithm. Finally, in Section IV some
numerical experiments are discussed. For a similar approach
applying a conjugate gradient method and a Newton-type
algorithm we refer to [4].

II. THE LOCAL C-NUMERICAL RANGE

An object that arises naturally in the study of the LSOP
is the local C-numerical range of A

Wloc(C,A) :=
{
tr (C†UAU†)

∣∣U ∈ SUloc(2
N )
}
, (8)

defined for arbitrary complex matricesC,A ∈ C
2N×2N

.
Natural measures of the size ofWloc(C,A) are the so-called
local C-numerical radius of A defined by

rloc(C,A) := (9)

max
{
|tr (C†UAU†)|

∣∣ U ∈ SUloc(2
N )
}
.

or the local C-numerical abszissa of A defined by

α±
loc(C,A) := (10)

max
{
± Re(tr (C†UAU†))

∣∣ U ∈ SUloc(2
N )
}
.

Thusrloc(C,A) is the radius of smallest disk centered at the
origin and containingWloc(C,A), whereasα±

loc(C,A) and
α±

loc(C, iA) specify the side lenghts of the smallest rectangle
containingWloc(C,A). Observe, that the determination of
α±

loc(C,A) is completely equivalent to the LSOP (6).
By definition,Wloc(C,A) is a subset of the ordinaryC-

numerical range ofA

W (C,A) :=
{
tr (C†UAU†)

∣∣ U ∈ SU(2N )
}
. (11)

Thus estimates of theC-numerical range provide bounds for
the size ofWloc(C,A). However, such bounds turn out to
be too coarse and therefore require a deeper investigation of
the geometry ofWloc(C,A). Quite a bit is known already
about the geometry of the ordinaryC-numerical range. For
example,W (C,A) is always a star-shaped, and hence a
simply-connected, compact subset ofC, cf. [3]. Moreover, Li
and Tsing [12] have shown thatW (C,A) is a circular disk
centered at the origin for any complex matrixC, if and only
if A is unitarily similar to a block-shift matrix in canonical
form, i.e. unitarily similar to a nilpotent matrix whose only
nonzero entries occur on lower subdiagonal blocks.

To the best of our knowledge, the geometry ofWloc(C,A)
has not been studied in any systematic way. From (8) it
is easily seen thatWloc(C,A) is invariant under special
unitary similarities ofA or C by elements ofSUloc(2

N ).
Furthermore,Wloc(C,A) is the continuous image of the



compact and connected setSUloc(2
N ) and therefore itself

compact and connected. However, in contrast to the ordinary
C-numerical range,Wloc(C,A) is neither star-shaped nor
simply connected. The following two examples illustrate
this new phenomenon. In the first example,W (C,A) is
convex whileWloc(C,A) is non-convex (but star-shaped).
The second example shows thatWloc(C,A) can even be non-
simply connected, while this never happens forW (C,A).

Example 2.1: The matricesC andA are given by

C =

[
1 0
0 0

]
⊗

[
1 0
0 0

]
, A =

[
1 0
0 −1

]
⊗

[
1 + i 0

0 1 − i

]
.

The localC-numerical range ofA is plotted in Fig. 1.
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Fig. 1. The localC-numerical range ofA with A, C as in example 2.1.

Example 2.2: The matricesC andA are given by

C =

[
1 0
0 0

]
⊗

[
1 0
0 0

]
⊗

[
1 0
0 0

]

A =

[
1 0

0 e
2
3 iπ

]
⊗

[
1 0

0 e
2
3 iπ

]
⊗

[
1 0

0 e
2
3 iπ

]
.

The localC-numerical range ofA is plotted in Fig. 2. In both
examples the boundary ofWloc(C,A) has been analytically
computed and added for a better visualization.

A complete analogue to the Li-Tsing circular disc charac-
terization forW (C,A) is unknown. Part of their character-
ization shows that rotational invariance of theC-numerical
range is equivalent to being circular. This is not surprising, as
being star-shaped and rotationally invariant obviously implies
thatW (C,A) is circular. However, for the localC-numerical
range this argument fails. Nevertheless, it can be shown to
hold even in the local case.

Theorem 2.1: Wloc(C,A) is rotationally invariant for any
C ∈ C

2N×2N

if and only if for all C ∈ C
2N×2N

it is a
circular disc in the complex plane, centered at the origin.

The proof is in preparation and out of the scope of this
paper. Regarding the characterization of rotational symmetry
of Wloc(C,A) we give the following conjecture.
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Fig. 2. The localC-numerical range ofA with A, C as in example 2.2.

Conjecture 2.1: If Wloc(C,A) is rotationally invariant for
anyC ∈ C

2N×2N

with N ≥ 2, thenA is similar to a block-
shift matrix in canonical form via a special unitary transfor-
mation of the formU = V P , whereV ∈ SUloc(2

N ) andP
is contained in the subgroup generated by permutations of
the form

I2 ⊗ · · · ⊗ I2 ⊗





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



⊗ I2 ⊗ · · · ⊗ I2. (12)

However, concerning sharp estimates forWloc(C,A), the
circular and even the hermitian case, which is well un-
derstood ifU is allowed to range over the entire special
unitary group, cf. [1], [7], are both completely unknown.
Thus, the LSOP seems to be a very difficult problem, much
harder than theC-numerical range analog. Therefore, we
recourse to numerical methods in order to find such bounds
for Wloc(C,A), which is the subject of the next section.

III. GEOMETRIC OPTIMIZATION METHODS

Here we present two different geometric approaches to
solve the LSOP. The first one amounts to an intrinsic Euler
step discretization of the gradient flow off on the Lie group
SUloc(2

N ). Explicit choices of step sizes are given such that
the algorithm converges from any initial point to the set of
critical points. We then discuss a variant of the Jacobi method
where the control directions of (3) serve as search directions.
Both algorithms are linearly convergent.

A. Preliminaries

Recall that the setSU(2N ) of unitary (2N ×2N )-matrices
of determinant one is a compact connected Lie group of real



dimension22N − 1. The tangent space ofSU(2N ) at an
elementU is

TUSU(2N ) = {ΩU | Ω† = −Ω, tr Ω = 0}. (13)

In particular, the tangent space ofSU(2N ) at the identity
elementI2N is the Lie algebra

su(2N ) := {Ω | Ω† = −Ω, tr Ω = 0} (14)

of all traceless skew-Hermitian matrices. Our main interest
will be in the compact, connected,3N -dimensional Lie
subgroup

SUloc(2
N ) := (15)

{U1 ⊗ · · · ⊗ UN | Uk ∈ SU(2)} ⊂ SU(2N ),

known in quantum information theory as the subgroup of
local unitary operations. The Lie algebra ofSUloc(2

N ) is

su(2)⊗̂ · · · ⊗̂su(2) := {Ω1⊗̂ · · · ⊗̂ΩN | Ωj ∈ su(2)}, (16)

where the(2N × 2N )-matrix Ω1⊗̂ · · · ⊗̂ΩN is defined as

Ω1⊗̂ · · · ⊗̂ΩN := (17)
N∑

k=1

I2 ⊗ · · · ⊗ I2 ⊗ Ωk ⊗ I2 ⊗ · · · ⊗ I2.

Here, the termΩk ∈ su(2) appears at thek-th position of the
Kronecker product andI2 denotes the(2×2)-identity matrix.
Moreover, the tangent space ofSUloc(2

N ) at an elementU
is given by

TUSUloc(2
N ) = {ΩU | Ω ∈ su(2)⊗̂ · · · ⊗̂su(2)}. (18)

In the sequel, we will endowSUloc(2
N ) with the bi-invariant

Riemannian metric induced bySU(2N ), i.e.

〈ΩU,ΞU〉 := tr (Ω†Ξ) (19)

for ΩU,ΞU ∈ TUSUloc(2
N ). Thus, for two Lie algebra

elementsΩ1⊗̂ · · · ⊗̂ΩN andΞ1⊗̂ · · · ⊗̂ΞN we have

〈Ω1⊗̂ · · · ⊗̂ΩN ,Ξ1⊗̂ · · · ⊗̂ΞN 〉 = 2N−1
N∑

k=1

tr (Ω†
kΞk).

(20)
Furthermore, we will use for any elementΩ ∈ su(2) and
k = 1, · · · , N the following short cut notation. Let

Ω̂k := I2 ⊗ · · · ⊗ I2 ⊗ Ω ⊗ I2 ⊗ · · · ⊗ I2, (21)

where the termΩ appears at thek-th position of the Kro-
necker product. In particular, forj 6= k then Ω̂k and Ξ̂l are
orthogonal, for arbitrary elementsΩ,Ξ ∈ su(2). Therefore
the map

(Ω1, · · · ,ΩN ) 7→ Ω1⊗̂ · · · ⊗̂ΩN (22)

is injective, as the summands are mutually orthogonal. This
proves

Lemma 3.1: The map

su(2) × · · · × su(2) → su(2)⊗̂ · · · ⊗̂su(2),

(Ω1, · · · ,ΩN ) 7→ Ω1⊗̂ · · · ⊗̂ΩN

is a Lie algebra isomorphism.

Finally, let

X :=

[
0 i
i 0

]
, Y :=

[
0 −1
1 0

]
, Z :=

[
i 0
0 −i

]
(23)

denote the Pauli matrices which form a basis ofsu(2). From
the above we see that

π : C
2N×2N

→ su(2)⊗̂ · · · ⊗̂su(2) (24)

defined by

π(A) :=
1

2N

N∑

k=1

(
Re(tr(A†X̂k))X̂k + Re(tr(A†Ŷ k))Ŷ k

+Re(tr(A†Ẑk))Ẑk
)

is the orthogonal projection onto the Lie algebra
su(2)⊗̂ · · · ⊗̂su(2).

B. The Gradient Flow and the Hessian

Now, we are prepared to determine the gradient flow off

on SUloc(2
N ) and its Hessian. The latter will be important

for specifying a suitable step size for the discretization of
the gradient flow. In the following, let

[A,B] := AB −BA (25)

denote the commutator for arbitraryA,B ∈ C
2N×2N

.

Theorem 3.1: Let f : SUloc(2
N ) → R be defined as

in (6). The gradient off with respect to the bi-invariant
Riemannian metric (19) and the corresponding flow is given
by

grad f(U) = π([C†, UAU†])U (26)

and
U̇ = π([C†, UAU†])U, (27)

respectively. More explicitly, (27) is equivalent to a system
of N coupled equations

U̇k = ΩkUk, k = 1, · · · , N (28)

on SU(2), where

Ωk =
1

2N

(
Re(tr([C†, UAU†]†X̂k))X

+Re(tr([C†, UAU†]†Ŷ k))Y

+Re(tr([C†, UAU†]†Ẑk))Z
)
.

Every solution of (28) exists for allt ∈ R and converges
for t → ±∞ to a critical point. The critical points off are
characterized by

π([C†, UAU†]) = 0. (29)

Proof. The Fŕechet derivative off at U ∈ SUloc(2
N ) is

the linear map on the tangent spaceTUSUloc(2
N ) defined

by

Df(U)(ΩU) = Re(tr (C†[Ω, UAU†]))

= Re(tr ([UAU†, C†]Ω))

= tr (π([C†, UAU†])†Ω)

(30)



and therefore the gradient off is

grad f(U) = π([C†, UAU†])U. (31)

By compactness ofSUloc(2
N ) the solutions of (27) exist for

all t ∈ R and converge to the set of critical points. Since
grad f is a real analytic gradient vector field the pointwise
convergence of (27) follows from a result by Łojasiewicz
[13]. Thus, the theorem is proved. �

Moreover, ifC = C1 ⊗ · · · ⊗ CN andA = A1 ⊗ · · · ⊗ AN

are Kronecker products of Hermitian matricesCk andAk,
then the gradient flow simplifies to

U̇k = ΩkUk, k = 1, · · · , N (32)

with

Ωk =
1

2N

∏

i6=j

tr(CiUjAjU
†
j ) ·

(
tr([Ck,X]UkAkU

†
k)X

+ tr([Ck, Y ]UkAkU
†
k)Y + tr([Ck, Z]UkAkU

†
k)Z

)
.

In this case the critical points are characterized by
∏

i6=j

tr(C†
i UjAjU

†
j ) · [Ck, UkAkU

†
k ] = 0, k = 1, . . . , N

because[Ck, UkAkU
†
k ] is skew-Hermitian.

By construction, the gradient flow (27) tends to maximize
the trace functionf : SUloc(2

N ) → R. Hence its discretiza-
tions will lead to optimization methods for the LSOP, see
Section III-C.

Moreover, the stability analysis of the critical points as
well as suitable step size selections of (27) require knowledge
of the Hessian off . To compute the Hessian we note that
the geodesics ofU ∈ SUloc(2

N ) with respect to the bi-
invariant metric are just the one-parameter groupsα(t) =
exp(tΩ)U , whereΩ denotes an arbitrary Lie algebra element
of su(2)⊗̂ · · · ⊗̂su(2). Therefore, the Hessian off at U is
determined by evaluating the second derivative ofϕ := f ◦
α at t = 0, for any geodesicα. This yields the Hessian
quadratic form

Hessf (U)(ΩU,ΩU) := (f ◦ α)′′(0). (33)

The Hessian operatorHf (U) then is obtained by the standard
polarization process from this quadratic form. Explicitly, the
second derivative of

ϕ(t) = Re(tr (C†etΩUAU†e−tΩ)) (34)

at t = 0 for arbitraryΩ ∈ su(2)⊗̂ · · · ⊗̂su(2) is

ϕ′′(0) = Re
(
tr (C†[Ω, [Ω, UAU†]])

)
, (35)

implying for the Hessian quadratic form

Hessf (U)(ΩU,ΩU) = Re
(
tr (C†[Ω, [Ω, UAU†]])

)

= Re
(
tr ([C†,Ω] · [Ω, UAU†])

)
.

This yields the following result.

Theorem 3.2: Let f : SUloc(2
N ) → R be defined as in

(6). Then the Hessian operator off at U is given by the
selfadjoint linear map

Hf (U) : TUSUloc(2
N ) → TUSUloc(2

N ),

Hf (U)ΩU = S(Ω)U

whereΩ ∈ su(2)⊗̂ · · · ⊗̂su(2) and

S(Ω) :=
1

2
π
(
[[Ω, UAU†], C†] + [[Ω, C†], UAU†]

)

=
1

2
π
(
[[Ω, UAU†], C†] + [[Ω, C], UA†U†]

)
.

C. Euler Step Discretization of the Gradient Flow

We now aim at a suitable step size selection to derive
an implementable numerical integration scheme for (27).
Standard numerical integration methods for unconstrained
ODEs are not useful here as they do not preserve the unitary
nature of the solution. The discretization we propose is
similar as in [6]

Uk+1 := exp
(
αkπ([C†, UkAU

†
k ])
)
Uk (36)

yet with a specific step sizeαk ≥ 0 to be determined.
See also [2], [7] for related step size selection schemes in
different contexts.

Theorem 3.3: Let

αk :=

∥∥π([C†,UkAU
†

k
])
∥∥2

∥∥[C†,π([C†,UkAU
†

k
])]
∥∥·
∥∥[UkAU

†

k
,π([C†,UkAU

†

k
])]
∥∥ . (37)

Then (36) converges to the set of critical points off .

Proof. For Ω := π([C†, B]) andB := UkAU
†
k let

ϕ(t) := Re(tr (C†etΩBe−tΩ)). (38)

The derivative ofϕ is

ϕ′(t) = Re(tr ([etΩBe−tΩ, C†]Ω)) (39)

with
ϕ′(0) = Re(tr ([B,C†]Ω))

= ‖π([C†, B])‖2 ≥ 0
(40)

and ϕ′(0) = 0 if and only if Uk is a critical point off .
Moreover,

ϕ′′(t) = Re(tr ([C†,Ω][Ω, etΩBe−tΩ])). (41)

Therefore, sinceetΩ is unitary, we have

|ϕ′′(t)| ≤
∥∥∥[C†,Ω]

∥∥∥ ·
∥∥∥[Ω, etΩBe−tΩ]

∥∥∥

=
∥∥∥[C†,Ω]

∥∥∥ ·
∥∥∥etΩ[Ω, B]e−tΩ

∥∥∥

=
∥∥∥[C†,Ω]

∥∥∥ ·
∥∥∥[Ω, B]

∥∥∥.

(42)

By the Mean Value Theorem this implies

|ϕ′(t) − ϕ′(0)| ≤ sup
0≤τ≤t

|ϕ′′(τ)| · t (43)



for t ≥ 0. That is, for

t ≤ αk :=
‖Ω‖2

∥∥∥[C†,Ω]
∥∥∥ ·
∥∥∥[Ω, B]

∥∥∥
(44)

we obtain by (42)

|ϕ′(t) − ϕ′(0)| ≤
∥∥∥[C†,Ω]

∥∥∥ ·
∥∥∥[Ω, B]

∥∥∥ · t

≤ ‖Ω‖2 =ϕ′(0)
(45)

for all t ∈ [0, αk]. This shows that

ϕ′(t) ≥ 0 for t ∈ [0, αk] (46)

and thereforeϕ is monotonically increasing on[0, αk]. Since
SUloc(2

N ) is compact, the result now follows from a familiar
Lyapunov-type argument, as explained in section 2.3 of [7].
�

In particular, the above result holds for all step sizes0 <

α ≤ αk. Thus, upper bounds on the denominator in (44)
lead to more conservative step size selection schemes.

Corollary 3.1: Convergence of (36) to the set of critical
points holds for the step size

α∗
k :=

∥∥∥π([C†,UkAU
†

k
])
∥∥∥

2‖A‖·

∥∥∥[C†,π([C†,UkAU
†

k
])]
∥∥∥

(47)

and in particular for the constant step size

α∗∗
k =

1

4‖A‖ · ‖C‖
. (48)

Proof. From
∥∥∥[B,Ω]

∥∥∥ ≤ 2‖B‖ · ‖Ω‖ = 2‖A‖ · ‖Ω‖ (49)

we obtain

α∗
k =

‖Ω‖

2‖A‖ ·
∥∥∥[C†,Ω]

∥∥∥
≤

‖Ω‖2

∥∥∥[C†,Ω]
∥∥∥ ·
∥∥∥[Ω, B]

∥∥∥
= αk

and similarly
α∗∗

k ≤ α∗
k. (50)

�

D. The Jacobi Algorithm

The Jacobi-type method proposed here uses the directions
X̂k, Ŷ k andẐk to maximize the trace function. The obtained
step-sizes yield controls for steering system (4) to a maxi-
mum. The underlying idea is the following. LetB be the
ordered basis

(X̂k, Ŷ k, Ẑk), k = 1, . . . , N

of the Lie algebra ofSUloc(2
N ). Then, for givenC,A ∈

C
2N×2N

, consider the first basis elementΩ1 = X̂1 ∈ B and
maximize

t 7−→ Re(tr (C†etΩ1Ae−tΩ1)). (51)

Note, that by the special form of theΩi’s, this maximization
task results in maximizing a polynomial of degree two in

cos t and sin t and hence is not expensive. Lett(1)∗ denote
the local maximum that is nearest to0 and set

A1 := et(1)∗ Ω1Ae−t(1)∗ Ω1 .

Now consider the next basis elementΩ2 = Ŷ 1 ∈ B and
maximize

t 7−→ Re(tr (C†etΩ2A1e
−tΩ2)) (52)

to obtain in an analogous wayt(2)∗ and A2 :=

et(2)∗ Ω2A1e
−t(2)∗ Ω2 , and so forth. More precisely, we imple-

ment a cyclic Jacobi sweep as follows. Let

t
(i)
∗ (A) := arg max

t∈R

Re(tr (C†etΩiAe−tΩi))

be a local maximum of the functionRetr (C†etΩiAe−tΩi).
We chooset(i)∗ to have minimal absolute value. LetAk be
given and set

A
(1)
k := et(1)∗ (Ak)Ω1Ake−t(1)∗ (Ak)Ω1

A
(2)
k := et(2)∗ (A

(1)
k

)Ω2A
(1)
k e−t(2)∗ (A

(1)
k

)Ω2 (53)
...

A
(3N)
k := et(3N)

∗ (A
(3N−1)
k

)Ω3NA
(3N−1)
k e−t(3N)

∗ (A
(3N−1)
k

)Ω3N

The Jacobi algorithm itself consists of iterating sweeps.

1. LetA0, A1, ..., Ak be given for somek ∈ N.

2. Define the sequenceA(1)
k , ..., A

(3N)
k as in (53).

3. SetAk+1 := A
(3N)
k and continue with the next sweep.

The Jacobi algorithm generates a sequence of elementary
unitary matricesθk ∈ SUloc(2

N ), k ∈ N, converging –
supported by numerical experiments – to a local maximum
U :=

∏∞
k=1 θk of the trace function.

Orthogonality of the maximizing directionsΩi with re-
spect to the Hessian off at a local maximum would lead to
local quadratic convergence of the algorithm, see [9], [11]. In
our case, this is unfortunately not guaranteed and therefore
the Jacobi algorithm converges in general only linearly. We
leave it as an open problem to find a clever choice of basis
vectors{Ω1, · · · ,Ω3N} that are orthogonal with respect to
the Hessian.

IV. NUMERICAL EXPERIMENTS

In this section we present a few numerical experiments. A
comparison of the Euler step discretization of the gradient
flow and the Jacobi-type method is presented. The former
one is visualized in Fig. 3 for example 2.2.

Both algorithms have been implemented in MATHEMAT-
ICA 5.2. The partial maximization steps, cf. (53), have been
done using the MATHEMATICA -commandFindMaximum
with initial condition t = 0. In Fig. 4,N = 5 andC has
(1, 1)-entry equal to1 and zeros elsewhere. The matrixA
is Hermitian and diagonalizable by local transformations.Its
eigenvalues are randomly chosen integers ranged between
−10 and 30. In Fig. 5, againN = 5 and the entries of
the real as well as of the imaginary part ofA and C are
realizations of a standard normal distributed random variable.



Note, that for a visualization of the Jacobi method, one step
corresponds to one single step within a sweep, i.e. in the
above cases, one sweep consists of32 steps.

Unfortunately, both algorithms occasionally get stuck in
points that are not global maxima. We take that as an
indication that the trace function possesses local maxima that
are not global ones.
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Fig. 3. The gradient flow for Example 2.2.
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Fig. 4. N = 5, C is non-zero only in(1, 1)-entry, whereC11 = 1;
A diagonalizable by fast transformations; solid line = Jacobi-type method;
dashed line = Euler step discretization of the gradient flow.

V. CONCLUSIONS

We have introduced a new mathematical object, thelocal
C-numerical range Wloc(C,A). It has been shown that
Wloc(C,A) has a rather complex geometry. Two intrinsic
numerical algorithms have been proposed to obtain sharp
bounds on the size ofWloc(C,A). Moreover, the second
one additionally yields a local unitary propagator solvingan
underlying quantum control problem. Numerical experiments
have indicated that both methods apparently can get stuck in
local maxima. This gives rise to future work.
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