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Abstract— Motivated by applications in quantum computing  Hilbert state space is formed by thé-fold tensor product
and quantum control, we consider the task of maximizing over all single spin% particle spaces, i.e.
the trace function Re(tr (CTUAUT)) on the Lie group of N-
fold tensor products of special unitary (2 x 2)-transformations. H=C?9C?®- - @ C2 CQN
In order to approach this highly non-convex optimization ’

problem, a new object, the localC-numerical range Wi..(C, A),  endowed with its natural Hermitian inner product. Moregver

is introduced and its geometry is studied. We first present : :
examples that illustrate the rather complex geometric structure we assume that the Hamiltonian operatbrdecomposes as

of the local C-numerical range. It is shown that, in contrast 2N

to the ordinary C-numerical range, Wi..(C, A) is in general H=H,+ ka(t)Hk (3)
neither star-shaped nor simply connected. The equivalence of ’ ’
finding bounds on the size ofi¥i,.(C, A) and maximizing the
above trace function is derived. We then describe and analyse where Hy := 3", _; Jxi0k, 2012,

two intrinsic optimization methods to tackle these problems:

(a) a gradient flow with an Euler step discretization scheme Ok fork=1,...,N
and (b) a Jacobi-type algorithm. Explicit step size selections Hy, =
are given for which the gradient algorithm converges to the set

of critical points. Finally, numerical experiments are presented.

k=1

O(k—N),y fork:N—f—l,,QN

) andoy, . denotes theV-fold Kronecker product
Index Terms— C-Numerical Range, Quantum Control,

Quantum Computing, Optimization on Lie Groups. Oka =l ® - LR, @I ®- - ® I,
k=1,...,N, «a€{z,y,z}
I. INTRODUCTION
with the Pauli matrices
Before describing in more precise terms the specific op- i
timization task which will be studied in this paper, we first 5 .= [0 1} , Oy = [O _1] . 0. = F 0 }
recall some basic facts from quantum mechanics. The state 1.0 10 0 -1
of a closed quantum system is represented by a normalizegpearing at thé:-th position. Such Hamiltonians describe
elementy), the state vector, in a complex Hilbert spaiie a sufficiently rich class of physically relevant situatiofige
Similarly, the state of an ensemble of a finite number ofime-dependent real-valued functiong define the controls
identical and non-interacting quantum subsystems regjaire that are accessible to the experimenter, while the opefagor
representation by a positive semidefinite selfadjoint afger describes the spin-spin interactions, e.g. of Ising-tyjrais,
A on H, normalized totr (4) = 1. It is called the den- we refer to H; and Hj, as drift and control Hamiltonians,
sity operator of the ensemble. Moreover, an observable jigspectively. The real scalatk; denote the weak coupling
represented by a selfadjoint linear operatordnThe time  constants. Summarizing, the Sedinger equation (2) in our
evolution of the state is governed by the associated unitagituation of interest has the explicit form
propagatorlU (¢) in the sense

2N
Y(t)=Utw and A(t)=U®AU®), (1) U=-i (Hd + ka(t)Hk> U, U©0)=In. (4)
k=1

respectively, wheré/! := U denotes conjugate transpose.ryq solutionsU (t) thus evolve on the compact Lie group

The dynamics of the unitary operatéf(t) is in turn de- SU(2N) of unitary (2N x 2N)-matrices with determinant
scribed by the corresponding Sodinger equation, i.e. detU = 1

U =—iHU, U(0)=Idg. ) In a quantum ensemble, whose state evolution is repre-
sented by a density operatdit) = U(t) AU (t)', the expec-
Here the Hermitian operatadf is called the joint Hamilto- tation value of an observabl€ is determined by the trace
nian. In this paper, we focus on ensemblesNofcoupled function Re(tr (CTU(t)AU(¢))). In other settingsC' may
spin% particles orN-qubits. In this specific case, the joint denote a desired target operator, whose best approximation



by A(t) = U(t)AU(t)! is sought for. For instance, in co- where in the seque| - || always denotes the Frobenius
herent ensemble spectroscopy, the maximum signal ingensitorm, i.e.,||C|| = /tr (CC). Thus minimizing the distance
that is experimentally achievable by transferring an ahiti betweenC' and U AU is the same as maximizing the trace
operatorA = A(0) to a target operatof’ is bounded from function f. Therefore, the LSOP is also closely related to
above by the maximal value oRe(tr (CTU(t)AU(t)T)). the task of computing entanglement measures in quantum
Note, that in such applications, the matric€sA are no information theory, which are induced by the Euclidean
longer confined to be Hermitian. For further details ordistance.
guantum mechanics of coupled spin systems and coherenin the subsequent sections the LSOP is related to the
ensemble spectroscopy see e.g. [5]. geometry of theC-numerical range ofA and two numerical
Recall, that the reachable s& of (4) is precisely the algorithms for solving it are presented: (a) a gradient iméth
union of all trajectories of (4), i.eR := {U(T) | T > 0}, and (b) a Jacobi-type algorithm. Finally, in Section IV some
where U(t) is a solution of (4). Thus, the above optimalnumerical experiments are discussed. For a similar approac
control problem can be reformulated as an optimization taskpplying a conjugate gradient method and a Newton-type

on the closureR of the reachable set of (4): algorithm we refer to [4].
max f(U) := Re(tr (CTUAUT)), 5) Il. THE LOCAL C-NUMERICAL RANGE
subject to: U € R. An object that arises naturally in the study of the LSOP

It is a well-known fact from nonlinear control theory [10], is thelocal C-numerical range of A

that the closure of the reachable sets of the &dinger Wiee(C, A) == {tr (CTUAUT)|U € SU.(2V)},  (8)

equation (4) are closed Lie subgroups $f(2V). Thus,

the above optimization problem is equivalent to maximizinglefined for arbitrary complex matriceS, A €

the function f(U) = Re(tr (CTUAUT)) over a closed Natural measures of the size Bf,,.(C, A) are the so-called

Lie subgroup of SU(2V). In [14] it is shown that the local C-numerical radius of A defined by

Sﬁhbdinger equation (4) is controllzble forr] spin systems, Fioe(C, A) = 9)

whose interactions form a connected graph, e.g. Ising-type

couplings. Problem (5) then corresponds to maximizing max {[tr (CTUAUN| | U € ST (27)}-

Re(tr (CTUAUT) over the full unitary groupSU(2"). For  or thelocal C-numerical abszissa of A defined by

a detailed discussion of this case and a study of gradient N

algorithms see [7], [8]. o (C, A) = (10)
In this paper we focus on the other extreme case when max { + Re(tr (CTUAU")) | U € SUc(2M)}.

all couplings vanish and one is left with so-called Iocalrhusnoc((], A) is the radius of smallest disk centered at the

.controlls, i.e.H, :.0 in (4). Herg, the reachable set of (4)ﬂrigin and containingie.(C, A), WhereaSaliOC(C, 4) and
is easily characterized as the Lie subgroup generated by the (C,1A) specify the side lenghts of the smallest rectangle

. «
one-parameter subgroups— exp(—itHg), k =1,...,2N. . L
As these span theV-fold Kronecker product of special ccintammg WIOC(C’ A). Obser.ve, that the determination of
: . . ai- (C, A) is completely equivalent to the LSOP (6).
unitary (2 x 2)-matrices, the reachable set is equal to theloc - ; :
Lie subgroup By definition, W,.(C, A) is a subset of the ordinarg'-

numerical range ofd

CszzN

loc

Following standarcljv terminology from quantum computingry g estimates of the-numerical range provide bounds for
we refer toSU.(27) as the Lie subgroup dbcal unitary 0 gjze of Wiee (C, A). However, such bounds turn out to
operations. Problem (5) for local unitary operations carsth o 1o coarse and therefore require a deeper investigation o
be stated as the the geometry ofi¥..(C, A). Quite a bit is known already
Local Subgroup Optimization Problem (LSOP) about the geometry of the ordina€y-numerical range. For
example, W (C, A) is always a star-shaped, and hence a
o t t simply-connected, compact subset®fcf. [3]. Moreover, Li
_ max f(U) := Re(t;(c vAUn), (6) and Tsing [12] have shown thdt’(C, A) is a circular disk
subject to: U € SUec(27) centered at the origin for any complex mate if and only

The LSOP is of considerable interest in areas such as qudh+} 1S unitarily similar to a block-shift matrix in canonical
tum control. In particular, in coherent ensemble spectpgc form, i.e. unl'Far|Iy similar to a nllpotent matrix whose gnl
— as we mentioned earlier — it is equivalent to the task dioNZero entries occur on lower subdiagonal blocks.
maximizing the experimentally achievable signal intgnsit 1° the best of our knowledge, the geometrybit..(C' A4)

using only local unitary operations. Moreover, the Euclide @S not been studied in any systematic way. From (8) it
distance betwee’ and 7 AU is is easily seen thai¥,.(C, A) is invariant under special

unitary similarities of A or C' by elements ofSUj,.(2).
|C—UAU||? = ||C|*> + ||A||> — 2Re(tr (CTUAUT)), (7)  Furthermore,Wi..(C, A) is the continuous image of the



compact and connected s6t;,.(2"V) and therefore itself
compact and connected. However, in contrast to the ordinary
C-numerical rangeW,.(C, A) is neither star-shaped nor
simply connected. The following two examples illustrate
this new phenomenon. In the first exampl&(C, A) is
convex while W),.(C, A) is non-convex (but star-shaped).
The second example shows tlif,.(C, A) can even be non-
simply connected, while this never happens TG{C, A).
Example 2.1: The matrices” and A are given by

Qo fto] , 10l [1+i 0
C_[O 0}@’{0 0]"4_[0 —1}‘8{0 1—1}'

The localC-numerical range ofd is plotted in Fig. 1.

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

Fig. 2. The localC-numerical range ofA with A, C' as in example 2.2.

Conjecture 2.1: If Wi,.(C, A) is rotationally invariant for
anyC € C2"*2" with N > 2, then A is similar to a block-
shift matrix in canonical form via a special unitary transfo
mation of the formU = V P, whereV € SUy,.(2") and P
is contained in the subgroup generated by permutations of

the form
1 0 00
0010
Fig. 1. The localC-numerical range ofd with A, C' as in example 2.1. LR - ®1® 010 0 @I ® - ® Is. (12)
Example 2.2: The matrices” and A are given by 0001
C = [1 0} ® [1 O} ® [1 0] However, concerning sharp estimates Wy,.(C, A), the
00 00 0 0 circular and even the hermitian case, which is well un-
e ? ® 1 9 1 9 derstood ifU is allowed to range over the entire special
0 e3'”™ 0 es'™ 0 es'™ unitary group, cf. [1], [7], are both completely unknown.

The localC-numerical range oft is plotted in Fig. 2. In both  Thus, the LSOP seems to be a very difficult problem, much

examples the boundary &¥,..(C, 4) has been analytically harder than theC-numerical range analog. Therefore, we

computed and added for a better visualization. recourse to numerical methods in order to find such bounds
A complete analogue to the Li-Tsing circular disc characfor Wiec(C; A), which is the subject of the next section.

terization foriW (C, A) is unknown. Part of their character-
ization shows that rotational invariance of thenumerical ll. GEOMETRIC OPTIMIZATION METHODS

range is equivalent to being circular. This is not surpgsems Here we present two different geometric approaches to
being star-shaped and rotationally invariant obviouslplies  solve the LSOP. The first one amounts to an intrinsic Euler
thatW(C, A) is circular. However, for the local'-numerical  step discretization of the gradient flow gfon the Lie group
range this argument fails. Nevertheless, it can be shown ¥7,.(2N). Explicit choices of step sizes are given such that
hold even in the local case. the algorithm converges from any initial point to the set of
critical points. We then discuss a variant of the Jacobi oebth
where the control directions of (3) serve as search direstio
Both algorithms are linearly convergent.

Theorem 2.1: W),.(C, A) is rotationally invariant for any
C e C¥*2" if and only if for all C € C2"*2" itis a
circular disc in the complex plane, centered at the origin.

The proof is in preparation and out of the scope of thié‘ Prelimnaries

paper. Regarding the characterization of rotational symme  Recall that the se$U (2"V) of unitary (2% x 2/V)-matrices
of Wi,.(C, A) we give the following conjecture. of determinant one is a compact connected Lie group of real



dimension22" — 1. The tangent space U (2") at an
elementU is

TySURN) ={QU | Qf = —Q,trQ =0}.  (13)

In particular, the tangent space 617(2V) at the identity
element/,~ is the Lie algebra

su(2V) = {Q]Qf = - trQ =0} (14)

of all traceless skew-Hermitian matrices. Our main interes

will be in the compact, connecte®N-dimensional Lie
subgroup

SU]OC(QN) =
{Ul R ---

(15)
@ Uy | U, € SU(2)} c SU(2N),

known in quantum information theory as the subgroup of

local unitary operations. The Lie algebra 61/;,.(2") is
5u(2)®--~®5u(2) = {(21@@9]\; | €su(2)}, (16)
where the(2V x 2V)-matrix Q,® - - - ®Qy is defined as

NL®--- R0y = a7

N
S heo
k=1

Here, the ternf);, € su(2) appears at thg-th position of the
Kronecker product and, denotes th€2 x 2)-identity matrix.
Moreover, the tangent space 8t/,.(2V) at an element/

is given by

Ty SUe(2Y) = {QU | Q € su(2)® - - - @su(2)}.

RULRN QLR R Is.

(18)

In the sequel, we will endow Uy, (2%) with the bi-invariant
Riemannian metric induced byU (2%), i.e

(QU,EU) = tr (ATE) (19)

for QU,EU € TySUp.(2V). Thus, for two Lie algebra
elements; @ - ®Qy and=;® - - - =y we have

N
(0 BN, 518 Bx) =2V "t (QfEy).

k=1
(20)

Furthermore, we will use for any elemefi € su(2) and

k=1,---,N the following short cut notation. Let

=L LRINRL® - ® I, (21)

where the ternt2 appears at thé-th position of the Kro-
necker product. In particular, fof # k thenQ* and=! are
orthogonal, for arbitrary element3, = € su(2). Therefore
the map

(Q, -

JON) = B ROy (22)

is a Lie algebra isomorphism.
Finally, let

A S R

denote the Pauli matrices which form a basiswf2). From
the above we see that

7 CP Y L su(2)B - Bsu(2) (24)

defined by

1

7'(' = 2N

N
3 (Re tr(AT X)) X* + Re(tr(ATY*)) V"
k=1

+Re(tr(ATZk))Zk)

is the orthogonal
su(2)® - - - Dsu(2).
B. The Gradient Flow and the Hessian
Now, we are prepared to determine the gradient flovf of
on SU(2V) and its Hessian. The latter will be important

for specifying a suitable step size for the discretizatidn o
the gradient flow. In the following, let

[A,B]:= AB— BA
denote the commutator for arbitrady, B € c2¥ <2y,

Theorem 3.1: Let f : SUi..(2Y) — R be defined as
in (6). The gradient off with respect to the bi-invariant
Riemannian metric (19) and the corresponding flow is given

by

projection onto the Lie algebra

(25)

grad f(U) = n([Ct,UAUT))U (26)

and
U =n([Ct,UAUU, (27)

respectively. More explicitly, (27) is equivalent to a ®rst
of N coupled equations

Uy = Uk,
on SU(2), where

1 ~
O = 2TV(Re(tr([ct UAUT)TX*)) X

+Re(tr([CT, UAUTTY*))Y
+Re(tr([CT, UAUT]TZk))z) .

k=1,---,N (28)

Every solution of (28) exists for alt € R and converges
for t — 400 to a critical point. The critical points of are
characterized by

r([CT,UAUT) =0 (29)
Proof. The Fichet derivative off at U € SU;,.(2V) is

is injective, as the summands are mutually orthogonal. Thise linear map on the tangent spaEg SUy.(2V) defined

proves
Lemma 3.1: The map

su(2) x - --

by
Df(U)(QU) = Re(tr (CT[Q,UAUT)))
= Re(tr ([UAUT,CTQ))
= tr(n([CT,UAUT))IQ)

(30)



and therefore the gradient gfis
grad f(U) = =n([CT,UAUTU. (31)

By compactness a$Uy,.(2") the solutions of (27) exist for

all t € R and converge to the set of critical points. Since

grad f is a real analytic gradient vector field the pointwise

convergence of (27) follows from a result by tojasiewiczyhere() su(2)®
([l

[13]. Thus, the theorem is proved.

Moreover, ifC =C1® - -@Cy andA =4, ® - ® Ay
are Kronecker products of Hermitian matric€s and Ay,
then the gradient flow simplifies to

Up=QU,, k=1,--- N (32)

with

Htr U AUT) (tr([Ck,X}UkAkU,I)X
i#]

+tr([C, YIURARUDY + tr([Ch, Z)Up AU )Z).
In this case the critical points are characterized by
k=1,...,

[[tx(Clu; A;UT) - [Cr, UL AU = 0, N

i

becaus€Cy, U, AU, ] is skew-Hermitian.

Theorem 3.2 Let f : SUic(2Y) — R be defined as in
(6). Then the Hessian operator ¢fat U is given by the
selfadjoint linear map

Hy(U): TUSUIOC(
( )9
su(2

([[Q vAUt), ot + [[Q,CT],UAUT])

- TUSUIOC(
SQU

2),

)
U
) and

5(9Q)

1
2"
% (il vAUT, o] + [0, €L UATUT).

C. Euler Sep Discretization of the Gradient Flow

We now aim at a suitable step size selection to derive
an implementable numerical integration scheme for (27).
Standard numerical integration methods for unconstrained
ODEs are not useful here as they do not preserve the unitary
nature of the solution. The discretization we propose is
similar as in [6]

Uk = exp (our([CT,UAU[) ) Uk (36)

yet with a specific step size, > 0 to be determined.
See also [2], [7] for related step size selection schemes in

By construction, the gradlent flow (27) tends to maximizélifferent contexts.

the trace functionf : SU..(2V) — R. Hence its discretiza-

tions will lead to optimization methods for the LSOP, see

Section IlI-C.

Moreover, the stability analysis of the critical points as

well as suitable step size selections of (27) require kndgée

Theorem 3.3: Let

of the Hessian off. To compute the Hessian we note that

the geodesics ot/ € SU,.(2V) with respect to the bi-
invariant metric are just the one-parameter grougs) =
exp(tQ)U, where() denotes an arbitrary Lie algebra elemen
of su(2)®--- ®su(2). Therefore, the Hessian ¢f at U is
determined by evaluating the second derivativepaf= f o

«a att = 0, for any geodesiav. This yields the Hessian
guadratic form

Hess; (U)(QU, QU) := (f o a)”(0). (33)

The Hessian operatdf ;(U) then is obtained by the standard
polarization process from this quadratic form. Explicitlye
second derivative of

©(t) = Re(tr (CTe U AUTe 1Y) (34)
att = 0 for arbitraryQ € su(2)® - - - @su(2) is
¢"(0) = Re(tr (CT[Q2, [2,UAUT])), (35)

implying for the Hessian quadratic form

Hess ; (U)(QU, QU) Re (tr (e, [, UAUT]]))

Re <tr ([ct, ] [0, UAUT])).

This yields the following result.

t )
H oty (le, UkAI‘]T([CH ﬁkU:_/JL\Z]]JL([CW‘,UkAU;])]H' (37)
Then (36) converges to the set of critical pointsjfof
Proof. ForQ:==([CT, B]) and B := U, AU] let
t ©(t) := Re(tr (CTe!* Be 1)), (38)
The derivative ofy is
¢'(t) = Re(tr (["** Be™, CT)Q)) (39)
with )
¢'(0) = Re(tr([B,C7)Q)) (40)

I=([CT,

and ¢’(0) = 0 if and only if Uy is a critical point of f.
Moreover,

B)[* = 0

¢"(t) = Re(tr ((CT, QJ[Q, e Be™™ ). (41)
Therefore, since® is unitary, we have
el < et e - io e B
- H (ct,q H e'[Q, Ble —tQ] (42)
— T .
|tc”. o] - 12 ]}
By the Mean Value Theorem this implies
[¥'(t) = ' (0)] < sup [@"(7)] -t (43)
0<r<t



for ¢ > 0. That is, for

R [l )
Jie a2
we obtain by (42)
w0 -¢o) < [etal- o]
< 2IP=¢'(0)
for all ¢ € [0, ax]. This shows that
O'(t)>0 for tel0,a (46)

and thereforey is monotonically increasing off, c]. Since

SUwee(2") is compact, the result now follows from a familiar
Lyapunov-type argument, as explained in section 2.3 of [7].

O

In particular, the above result holds for all step sipes

a < ag. Thus, upper bounds on the denominator in (44)

lead to more conservative step size selection schemes.

Corollary 3.1: Convergence of (36) to the set of critical

points holds for the step size

ﬂ([cT,UkAU;})H

o = 47)
2\|A\|<H[CT,W([CT,U;CAU,I])}H
and in particular for the constant step size
1
= (48)
SV Te]]
Proof. From
|iB,91|| < 21811 12) = 20141 - 121l @9)
we obtain
ol = €2l 2 —
204) - iet 9| ~ et |- 1o 8]
and similarly
ot < aj. (50)
O

D. The Jacobi Algorithm

cost andsint and hence is not expensive. L& denote
the local maximum that is nearest @oand set

Ay = e et

Now consider the next basis element = Y! ¢ B and
maximize

t — Re(tr (CTe!?2 A e~ 12)) (52)

to obtain in an analogous Waytf) and A, =
(2) _+(2)0. . .

et~ 2 A1e7 %22 and so forth. More precisely, we imple-

ment a cyclic Jacobi sweep as follows. Let

) (A) := arg max Re(tr (CTe! Ae~1%))
e a local maximum of the functioRetr (CTe!® Ae=!).

e choosetgf) to have minimal absolute value. Let;, be
given and set

A,(:) — etgw(Ak)QlAke—ti”(Ak)Ql
A](f) — etg?)(A}(cl))QzAl(ﬂl)eitg?)(Aggl))QQ (53)
ABN) o VAT Ray gON-D) o=t (AT TV) 0y

The Jacobi algorithm itself consists of iterating sweeps.

1. Let Ag, A4, ..., A, be given for somé: € N.

2. Define the sequenca!”, ..., A®") as in (53).

3. SetAy = A,(fN) and continue with the next sweep.
The Jacobi algorithm generates a sequence of elementary
unitary matricesty, € SU,c(2"),k € N, converging —
supported by numerical experiments — to a local maximum
U :=[[;=, 6 of the trace function.

Orthogonality of the maximizing directionQ; with re-
spect to the Hessian gf at a local maximum would lead to
local quadratic convergence of the algorithm, see [9],.[lr1]
our case, this is unfortunately not guaranteed and therefor
the Jacobi algorithm converges in general only linearly. We
leave it as an open problem to find a clever choice of basis

vectors{{,--- ,Qsx} that are orthogonal with respect to
the Hessian.

IV. NUMERICAL EXPERIMENTS

The Jacobi-type method proposed here uses the directiond thiS section we present a few numerical experiments. A
X* YV andZ* to maximize the trace function. The obtainegcomparison of the Euler step discretization of the gradient
step-sizes yield controls for steering system (4) to a maxilow and the Jacobi-type method is presented. The former

mum. The underlying idea is the following. L& be the
ordered basis

(X* Y% Z%), k=1,...,N

of the Lie algebra ofSU..(2V). Then, for givenC, A €
2" x2"  consider the first basis elemeft = X! € B and
maximize

t — Re(tr (CTe!h Ae~ ), (51)

Note, that by the special form of the;’s, this maximization

one is visualized in Fig. 3 for example 2.2.

Both algorithms have been implemented il HEMAT-
ICA 5.2. The partial maximization steps, cf. (53), have been
done using the MTHEMATICA-commandFi ndMaxi num
with initial conditiont = 0. In Fig. 4, N = 5 and C has
(1,1)-entry equal tol and zeros elsewhere. The matrik
is Hermitian and diagonalizable by local transformatidtss.
eigenvalues are randomly chosen integers ranged between
—10 and 30. In Fig. 5, againN = 5 and the entries of
the real as well as of the imaginary part df and C' are

task results in maximizing a polynomial of degree two irrealizations of a standard normal distributed random féaia



Note, that for a visualization of the Jacobi method, one step
corresponds to one single step within a sweep, i.e. in the
above cases, one sweep consist8bteps.

Unfortunately, both algorithms occasionally get stuck in
points that are not global maxima. We take that as an
indication that the trace function possesses local maxiaga t
are not global ones.

trace-function

0 10 20 30 40 50 60
steps

Fig. 3.

The gradient flow for Example 2.2.

Fig. 5. N =5, C, A randomly chosen; solid line = Jacobi-type method;
dashed line = Euler step discretization of the gradient flow.
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