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Abstract

An optimal control algorithm for mitigating the effects of T1 and T2 relaxation
during the application of long pulses is derived. The methodology is applied to
obtain broadband excitation that is not only tolerant to RF inhomogeneity typical
of high resolution probes, but is relatively insensitive to relaxation effects for T1

and T2 equal to the pulse length. The utility of designing pulses to produce specific
phase in the final magnetization is also presented. The results regarding relaxation
and optimized phase are quite general, with many potential applications beyond
the specific examples presented here.

Key words: RC-BEBOP; Relaxation; T1 relaxation; T2 relaxation; Optimal
control theory
PACS:

1 Introduction

Optimal control theory has proven to be an extremely flexible and power-
ful tool for designing pulses for NMR spectroscopy. A particularly challenging
problem, that of producing uniform excitation over a broad range of chemical
shift offsets and RF field inhomogeneity/miscalibration, simultaneously, has
been solved in a series of papers demonstrating Broadband Excitation by Op-
timized Pulses (BEBOP) [1–5]. The minimum pulse length of a given BEBOP
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depends upon the performance level required for the specific range of offset
and RF variation accomodated [3], but it can significantly exceed the length
of a hard pulse that would conventionally be used to excite the same band-
width (albeit nonuniformly and with poor tolerance to RF inhomogeneity). So
far, we have assumed that the longitudinal, T1, and transverse, T2, relaxation
times are much larger than the duration of the pulse, which will not always
be the case in practice. We therefore consider the design of BEBOPs that can
[[ minimize relaxation effects, ]] or Relaxation Compensated–BEBOP.

The effect of relaxation on pulse performance has been studied in detail
by Hajduk et al. [6]. When T2 and/or T1 are comparable to the pulse length,
tp, they not only found the expected loss of signal due to relaxation, but a
significant degradation in uniformity of the excitation profile for all the pulses
they considered. However, the literature on actual pulse design to mitigate
the effects of relaxation appears to be relatively sparse and applied to nar-
rowband, selective pulses. Nuzillard and Freeman modified BURP pulses to
obtain more uniform response over the selected bandwidth with SLURP [7],
but accepted what might be considered the inevitable attenuation due to short
T1, T2. Rourke et al. [8] later developed an iterative method for designing se-
lective pulses to compensate for transverse relaxation. The procedure they
presented did not accomodate either T1 effects or RF inhomogeneity. They
obtained a significant improvement in the uniformity of pulse response, but
actual T2 losses were not provided, and the method assumes 1/T2 is small [9].
Reference [9] derives a method for inverting the Bloch equation at a single
resonance offset for the special case T1 = T2. Its primary application is to
pulses which select a specific relaxation rate, which is different than what we
are considering here.

Expanding on these earlier works, we explore more generally the possibil-
ities for reducing [[ DELETE: or eliminating ]] relaxation effects during
long RF pulses (ie., relative to T2 and/or T1). Optimal control can consider
both T1 and T2 relaxation together with RF inhomogeneity over any specified
range of offsets, either connected or disjoint. Moreover, there is a physical ba-
sis for expecting to be able to compensate for relaxation during the pulse: we
can i) use the long duration of the pulse to position spins of different chem-
ical shift at appropriate orientations near the z axis that enable them to be
subsequently transformed to the x, y plane by a short pulse segment, reduc-
ing net T2 relaxation during the total pulse and ii) utilize the moderate, but
still significant, repolarization that occurs for short T1. These possibilities for
reducing relaxation effects are found quite naturally by the optimal control
algorithm, as shown in what follows. There does not appear to be any other
study which attempts to reduce the effects of relaxation in pulses of length
similar to T1, T2.
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2 Theory and Methods

Optimal control theory applied to NMR spectroscopy has been described in
detail elsewhere [1–5,10–12], for systems with no relaxation (ie., infinite T1, T2).
Here we reiterate the main theoretical aspects and introduce the necessary
modifications associated with finite T1, T2.

During the time interval [t0, tp], we seek to transfer initial z magnetiza-
tion M (t0) for a system of non-interacting spins to a desired final state F
over a given range of chemical shift offsets ∆ω and RF field inhomogene-
ity/miscalibration for specified values of T1 and T2. The spin trajectories M(t)
are constrained by the Bloch equation

Ṁ(t) = ωe(t)×M (t) + D[ M 0 −M(t) ], (1)

where M 0 = ẑ is the unit equilibrium polarization for appropriately normal-
ized units, the effective field, ωe, in angular frequency units (rad/s) is given
in terms of the time-dependent RF amplitude, ω1, and phase, φ, as

ωe(t) = ω1(t) [ cos φ(t) x̂ + sin φ(t) ŷ ] + ∆ω ẑ

= ωrf (t) + ∆ω ẑ, (2)

and the relaxation matrix is

D =





1/T2 0 0

0 1/T2 0

0 0 1/T1




. (3)

Proceeding as in our previous treatments, a time-dependent “hamiltonian”
h is defined in terms of a Lagrange multiplier λ as

h(t) = λ(t) · Ṁ(t) = λ · [ ωe ×M + D( M 0 −M ) ], (4)

which returns the Bloch equation as

Ṁ = ∂h/∂λ (5)

with the known value M (t0) at the beginning of the pulse. For a given cost
function Φ chosen to measure pulse performance, the optimization formalism
results in the conjugate or adjoint equation
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λ̇(t) =−∂h/∂M (6)

= ωe(t)× λ(t) + D λ(t) (7)

with the value λ(tp) = ∂Φ/∂M required at the end of the pulse, giving λ(tp) =
F for the cost

Φ = M(tp) · F , (8)

for example. In contrast to our earlier treatments without relaxation, λ(t) is
governed by a different evolution equation than M(t). This is a result of the
equilibrium polarization M 0 in Eq. [ 1 ]. [[ In applications governed by a
similar evolution equation, but absent the M 0 term (for example,
mixing pulses with relaxation [13,14]), the evolution of λ and M
differ only in the sign of the relaxation term, D. ]]

The final necessary condition that must be satisfied by a pulse that opti-
mizes the cost function is

∂h(t)/∂ωe(t) = 0 = M(t)× λ(t) (9)

at each time. For a nonoptimal pulse, Eq. [ 9 ] is not [[ fulfilled ]]. It then
represents a gradient giving the proportional adjustment to make in the con-
trols, ωe(t), for the next iteration towards an optimal solution. Additional
constraints on the maximum allowed RF amplitude, ωmax, may include clip-
ping, ωrf(t) ≤ ωmax, or pinning, ωrf(t) = ωmax.

The numerical algorithm has been described previously [1–5]. The addition
of relaxation to the Bloch equation is the only modification. For excitation,
the choice F = x̂ produces a pulse with the specified tolerance to RF inhomo-
geneity which drives all spins in the range of offsets considered to the x axis.
The resulting spectrum therefore requires no phase correction. However, this
imposes a very stringent requirement on the optimal control algorithm.

A linear phase dispersion in the final magnetization as a function of offset
is readily corrected in many practical applications and might allow more flex-
ibility in optimizing the pulse. We therefore also introduce a target function

F = cos ϕ x̂ + sin ϕ ŷ (10)

where ϕ is defined as a linear function of ∆ω and gives the angle between
the final transverse magnetization at offset ∆ω and the x axis. We have pre-
viously argued [5] that hard 90◦ pulses could be considered the benchmark
for broadband performance in sequences that are readily phase-corrected. In
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addition, hard pulses are likely the only option, currently, for broadband ex-
citation if relaxation effects are important. We therefore choose the slope of
ϕ(∆ω) to be that of a hard pulse with the same ωmax as the optimized pulse
under consideration.

3 Results and Discussion

We recently presented a purely phase-modulated BEBOP that provides an
unprecedented combination of excitation bandwidth and tolerance to RF inho-
mogeneity. This PM-BEBOP gives uniform excitation of greater than 99% over
the entire 200 ppm 13C chemical-shift range of a potential 1 GHz spectrome-
ter, for a constant RF amplitude anywhere in range 10–20 kHz [5]. However,
the shortest pulse that achieves this level of performance is 1 ms, which could
be problematic for applications with short T2 and/or T1.

The loss of signal and distortion of the excitation profile that occurs when
relaxation times are comparable to pulse length are illustrated in Fig. 1 for
PM-BEBOP, operated at the ideally calibrated maximum RF of 15 kHz. The
results are applicable to pulses in general when relaxation is a factor. For T2 =
1 ms, PM-BEBOP suffers a minimum 50–60% signal loss for any [[ allowed
]] value of T1, and, as expected, the excitation is no longer uniform over the
offset range. If T2 is 5 times longer, this pulse still suffers a 15–20% signal loss
compared to the ideal case of infinite T2.

Signal loss is reduced significantly, however, by incorporating relaxation into
the optimal control algorithm. For comparison, we designed relaxation com-
pensated pulses (RC-BEBOP) with a ±5% tolerance to RF inhomogeneity
(typical high resolution probes) and the same PM-BEBOP excitation band-
width of 50 kHz, optimized for the T1, T2 combinations listed in the legend to
Fig. 1. For T2 = 1 ms, RC-BEBOP excites 90–95% of the target Mx magneti-
zation for any T1, with excitation of at least 97% for T2 = 5 ms.

By contrast, a hard pulse of the same 15 kHz amplitude (t90 = 16.7µs)
is unaffected by a 1 ms T1 and T2, giving slightly greater signal near reso-
nance than RC-BEBOP, as shown in Fig. 2. However, the excitation profile
is “parabolic,” with signal amplitude decreasing steeply with offset, so RC-
BEBOP is a far better solution for broadband excitation in the presence of
relaxation than a hard pulse of equivalent RF amplitude. Moreover, if we al-
low the optimal control algorithm to generate the same linear phase dispersion
in the final magnetization that occurs for a hard pulse (eg., the target func-
tion of Eq. [ 10 ]), performance is improved even more dramatically. For the
demanding case T1 = T2 = tp = 1 ms, this additional RC-BEBOP uniformly
excites 98–99% of the transverse magnetization over the entire offset range,
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with linear phase, giving only a small signal loss of 1–2% compared to the case
of PM-BEBOP with no relaxation.

One might expect a shorter pulse optimized without relaxation to be an
alternative solution to the 1 ms RC-BEBOP considered. For example, in the
absence of significant relaxation, a 125 µs BEBOP [4] designed with ±5%
tolerance to RF inhomogeneity gives uniform excitation of 98% over an offset
range of 40 kHz with phase deviations from the x-axis of less than 2◦. Although
tp is an order of magnitude less than a 1 ms T1 and T2, we still find significant
distortion in the excitation profile if relaxation is included in the simulation.
In this case, values of Mx for the ideally calibrated RF range from 0.95 to
0.88 over the bandwidth. [[ For further comparison, a phase-alternated
composite excitation pulse [15] with the largest bandwidth (36 kHz
for a 15 kHz amplitude) is 215µs long and only excites 75–85% of
the magnetization over the bandwidth when relaxation effects are
included. Similar performance in the presence of relaxation is ob-
tained for broadband polychromatic pulses [16]. ]] Uniform excitation
with reduced signal loss in the presence of relaxation is not necessarily achieved
simply by using a shorter pulse.

The gain in signal that RC-BEBOP achieves over the uncompensated PM-
BEBOP for short T1, T2 is obtained by finding trajectories that not only
transform magnetization to the desired target state, but keep the magnetiza-
tion close to the z axis for as long as possible during the pulse. This is done
concurrently for all spins in the optimized range of resonance offsets and RF
inhomogeneity. An example for the ideal RF calibration is provided in Fig. 3,
showing the relatively small changes that occur in spin orientation for each
offset at progressively larger times during the pulse. The outer edges of the
bandwidth require the most manipulation during the early stages of the pulse,
with the bulk of the magnetizaion transformed to the transverse plane during
the final 2% of the pulse.

An example illustrating the trajectories at several offsets during the pulse
is provided in Fig. 4 for the linear target function used in Fig. 2 for the case T2

= 1 ms = tp. The early part of the pulse is used to “stall” the spins near the
z axis and orient them properly so they can all be transformed to the target
state by an effectively shorter pulse at the end.

This mechanism is further illustrated by the pulse itself, shown in Fig. 5.
There are only minor manipulations of the spins during the first 90% or so of
the pulse. After 0.98Tp, the spins are positioned so they can be transformed
to the transverse plane by a simple hard pulse. The y-amplitude of the pulse
is reminiscent of polychromatic pulses [16], which are purely amplitude mod-
ulated. The small x-amplitude modulation of RC-BEBOP only affects the
extreme limits of the bandwidth significantly (the outer 10%). Effects of the
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small RF oscillations during the first half of the pulse are demonstrable over
the entire bandwidth at a numerical level, acting to smooth deviations from
uniformity in the excitation profile. However, these deviations are significantly
less than 1% and would be difficult to detect in an NMR experiment. Hence,
a shorter 0.5 ms pulse starting in the middle of the 1 ms pulse shown would
perform as well over 45 kHz bandwidth as the full pulse over 50 kHz.

As T2 becomes shorter, it will still require the same amount of time to orient
all the spins appropriately, so the quality factor measuring pulse performance
will decrease with decreasing T2. Nonetheless, there are significant signal gains
available using RC-BEBOP compared to an uncompensated pulse, as shown
in Fig. 6, which compares quality factor as a function of T2 for PM-BEBOP
and RC-BEBOP. In addition, the calculations plotted in the figure confirm
that there is an advantage to shorter T1, as suggested in the Introduction. For
BEBOP in general, where the only contraint is to find spin-trajectories that
arrive at the target, performance is degraded as T1 decreases. When relaxation
is added as a contraint, RC-BEBOP utilizes trajectories close to the z axis to
not only reduce T2 effects, but to increase signal due to T1 repolarization of
z-magnetization—the shortest possible T1 will have the best performance in
this scenario.

Thus, the length of the pulse doesn’t matter after a certain point. Once
a relaxation-compensated pulse of minimum length is found that maximizes
performance for a particular application, optimizing with a longer pulse has
the obvious solution of zero RF amplitude at the beginning followed by the
minimum length pulse, giving the same performance. Figure 7 shows how the
performance of RC-BEBOP depends on pulse length for values of T1 between
1 ms and infinity for the specific choice of T2 = 1 ms. The results reiterate
the advantage of shorter T1 when optimizing pulse performance to include
relaxation. The effect is more pronounced only for T1 shorter than considered
in the figure.

The performance of RC-BEBOP also exhibits a reasonable degree of toler-
ance to values of T2 other than the specific value used in optimizing the pulse,
as shown in Fig.8. A pulse designed for the shortest expected T2 performs well
for all longer values (although not as well as a pulse optimized specifically for
the longer values).

4 Experimental

To test the performance of RC-BEBOP pulses, experimental excitation pro-
files analogous to the simulations shown in Fig.2B were measured on a Bruker
Avance 250 MHz spectrometer equipped with SGU units for RF control and
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linearized amplifiers. A sample of 99.96% D2O was saturated with CuSO4 to
final relaxation times at 296 K of T1 = 1.7 ms and T2 = 0.8 ms. A pulse of
length 1 ms and maximum RF amplitude 15 kHz was optimized for these ex-
perimentally derived relaxation times, giving a similar pulse shape to the one
shown in Fig. 5, optimized for T1 = T2 = 1 ms. The maximum RF amplitude
was calibrated using a hard pulse and by comparing experimental with theo-
retically expected offset patterns of several pattern pulses [17]. Offset profiles
for the optimized pulse and the hard pulse were obtained by varying the offset
of the pulses from -25 kHz to 25 kHz in steps of 1 kHz. The results are shown
in Fig. 9. The experimental data provide an excellent match with theory and
represent a [[ noticeable ]] improvement at offsets exceeding ± 10 kHz.

5 Conclusion

We have derived an algorithm using optimal control theory to mitigate
the effects of T1 and T2 relaxation during the application of long pulses. The
procedure is quite general and has many potentially useful applications. It
was applied here specifically to Broadband Excitation by Optimized Pulses
(BEBOP), since we have used them routinely as a simple proxy for character-
izing the performance and capabilities of optimal control in general within the
context of NMR. The resulting relaxation-compensated RC-BEBOPs extend
the utility of BEBOP pulses to applications in which T1, T2 are short compared
to the pulse length. Potential applications include, e.g., 13C spectroscopy of
proteins with paramagnetic centers. In addition, the shortest possible T1 was
shown to be advantageous for the performance of optimized pulses, due to
repolarization.

Since the benchmark for performance of broadband excitation in many
applications is a phase-corrected hard pulse, we also considered RC-BEBOPs
which produce a linear phase roll in the excited magnetization. Designing
pulses with specific phase characteristics for the final magnetization is a new
approach in our optimal control work and also has many potential applications.
For the demanding case of T1 and T2 equal to a pulse length of 1 ms, RC-
BEBOP uniformly excites ∼ 99% transverse magnetization over a bandwidth
of 50 kHz, tolerant to ±5% RF inhomogeneity, with deviations of less than
2◦ from linear phase at the maximum inhomogeneity. Pulse performance is
robust when relaxation is longer than the design values.
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Fig. 1. Simulated performance of the phase-modulated BEBOP from Ref. [5] (left
panel) and corresponding relaxation-compenstated RC-BEBOP pulses (right panel)
for the T1 and T2 values listed on the right. The length of both pulses is 1 ms. The
Mx-component of magnetization is plotted as a function of resonance offset, with
the nearly perfect performance of the pulses in the absence of relaxation illustrated
by the solid blue line at the top of each figure. PM-BEBOP performance is signifi-
cantly degraded for short T2 (bottom panels) and short T2 = T1 (top panels), while
RC-BEBOP achieves performance comparable to the case of no relaxation.
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Fig. 2. RC-BEBOP performance compared to a hard pulse for relaxation times
T2=T1= 1 ms equal to the RC-BEBOP pulse length. The maximum RF amplitude
of all pulses is 15 kHz (16.7 µs hard pulse). Note the change in scale between the
two plots. (A) Mx components of the magnetization resulting from application of a
hard pulse and RC-BEBOP designed to produce minimal phase dispersion are plot-
ted as a function of resonance offset. (B) transverse Mxy is plotted for a separate
RC-BEBOP designed to allow a linear phase roll in the final spectrum and is com-
pared to the performance of a hard pulse. Despite conditions for potentially severe
relaxation, RC-BEBOP uniformly excites ∼ 99% of the transverse magnetization
over a bandwidth of almost 50 kHz.
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Fig. 3. The transverse magnetization Mxy(t) resulting from application of the lin-
ear phase RC-BEBOP of Fig. 2B is plotted as a function of resonance offset at the
times shown in the figure legend. Spins at all offsets stay very close to the z-axis
(
√

1−M2
xy > 0.87) during the first 95% of the pulse, with spins at the extremes of

the bandwidth having been rotated the farthest from z at each time. Relaxation ef-
fects are thus minimized by positioning spins of each offset at the proper orientation
near the z-axis that allows all offsets to be transformed to the transverse plane by
what amounts to a hard pulse (see Fig. 5A) during the final 2% of the pulse length.
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Fig. 4. The Mz (red) and Mx (blue) components of magnetization resulting from
application of the linear phase RC-BEBOP of Fig. 2B are plotted as a function of
time for resonance offsets (A) -25 kHz, (B) 0 kHz, and (C) 25 kHz. The pulse miti-
gates relaxation effects by positioning spins of each offset at the proper orientation
near the z-axis that allows all offsets to be transformed to the transverse plane in
a relatively short time at the end of the pulse.
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Fig. 5. RC-BEBOP pulse of Fig.2B plotted as a function of time. (A) RF amplitude
plotted as x-phase (blue) and y-phase (green). The small, but nonzero, amplitude for
∼ 80% of the pulse length, shown more clearly in (B), affects primarily the extremes
of the bandwidth, as demonstrated in Fig. 3 and discussed in the text. Once the
spins at each offset are oriented properly during ∼ 0.98Tp, a hard pulse at the very
end transforms all the spins to transverse Mxy with linear phase as a function of
offset. Deviations from linearity are less than 0.3◦ for the ideally calibrated pulse,
with deviations less than 2◦ for RF inhomogeneity/miscalibration of ±5%.
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Fig. 6. The quality factor, QF, measuring how well the pulse achieves a target
magnetization Mx over the range of resonance offsets and RF inhomogeneity, is
plotted for PM-BEBOP and RC-BEBOP as a function of T2. Each point on a curve
represents the performance of the corresponding pulse for the associated value of T2

given on the graph and the value of T1 shown in the figure legend. RC-BEBOP was
designed specifically for these values at each point. In contrast to a long pulse with
no compensation for relaxation effects, short T1 results in improved performance for
RC-BEBOP.
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Fig. 7. Quality factor of RC-BEBOP as a function of pulse length for values of the
ratio T2/T1 in the range [0,1] for T2 = 1 ms. Performance design parameters are
similar to Fig. 6, but with a smaller tolerance to RF miscalibration of ±5%. The
quality factor obtainable with RC-BEBOP is relatively insensitive to T1 for values
of T2 greater than 1 ms (see, also, Fig. 6).
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Fig. 9. Experimental performance analogous to the simulations of Fig. 2B for (A)
a hard pulse and (B) RC-BEBOP optimized for the measured sample relaxation
times T1 = 1.7 ms and T2 = 0.8 ms. All other parameters are the same as for the
simulations. Further details can be found in the Experimental section.
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