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Abstract

Broadband implementations of time-optimal geodesic pulse elements are intro-

duced for the efficient creation of effective trilinear coupling terms for spin sys-

tems consisting of three weakly coupled spins 1/2. Based on these pulse elements,

the time-optimal implementation of indirect SWAP operations is demonstrated ex-

perimentally. The duration of indirect SWAP gates based on broadband geodesic

sequence is reduced by 42.3% compared to conventional approaches.
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1 Introduction

In the absence of relaxation, nuclear magnetic resonance (NMR) experiments consist of a

sequence of unitary transformations of the density operator representing the spin system

of interest (1). An important goal of both theoretical and practical interest is the design

of pulse sequences that can generate a desired unitary transformation as fast as possible,

in order to reduce losses due to relaxation. This poses the problem of time-optimal control

of quantum systems (2, 3, 4), which is of interest for coherent spectroscopy in general, as

well as for quantum information processing (5).

Here, we focus on the realization of effective propagators that correspond to the action

of an effective Hamiltonian with trilinear coupling terms which simulate a three-spin in-

teraction in spin chains consisting of three weakly coupled spins 1/2 (Ising coupling). In

the context of NMR polarization-transfer experiments, methods for creating such effec-

tive trilininear Hamiltonians have been developed and used for many years (6, 7). One

approach to create such effective Hamiltonians is based on the decoupling of certain inter-

actions during the pulse sequence (3, 8, 9). An earlier, more efficient approach does not

rely on decoupling (6, 7). Recently, further improved sequences (3) were derived which

also avoid decoupling. Even larger time savings are possible by using geodesic pulse se-

quences (3) that can be shown to be time-optimal. However, so far the geodesic pulse

sequences were based on weak rf pulses which severely limited the range of frequency

offsets for which the experiment is functional. In order to pave the way for practical

applications of these time-optimal pulse elements, we developed broadband versions of

the time-optimal geodesic sequence. Time-optimal indirect SWAP operations (3) were

realized experimentally in a three-spin system, demonstrating the superior performance

of the new sequences.
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2 Theory

We consider a chain of three heteronuclear spins with coupling constants J12 = J23 = J ,

J13 = 0 and offsets ν1, ν2, and ν3. In a multiple-rotating frame (1), the corresponding free

evolution Hamiltonian H0 is in general given by

H0 = Hc + Hoff , [1]

with the coupling term

Hc = 2πJI1zI2z + 2πJI2zI3z [2]

and the offset term

Hoff = 2πν1I1z + 2πν2I2z + 2πν3I3z. [3]

The same Hamiltonian is valid if e.g. the first and third spins are homonuclear and the

second spin is heteronuclear (vide infra).

Many applications in NMR spectroscopy (6, 7) and NMR quantum computing (10, 11, 12)

require unitary transformations of the form

Uαβγ(κ) = exp{−i 2π κ I1αI2βI3γ}, [4]

where α, β, γ can be x, y or z. The time τ required to realize such a propagator depends

on the pulse sequence and is a function of κ (see Table 1). The propagator Uαβγ(κ) can

also be expressed as

Uαβγ(κ) = exp{−i τ(κ) Hαβγ}, [5]

where Hαβγ corresponds to an effective trilinear coupling Hamiltonian of the form

Hαβγ = 2πJeff (κ) I1αI2βI3γ, [6]
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and the effective trilinear coupling constant Jeff (κ) is defined by

Jeff (κ) =
κ

τ(κ)
. [7]

For practical applications, τ(κ) should be as short as possible and hence the effective

coupling constant Jeff (κ) and the scaling factor

s(κ) =
Jeff (κ)

J
=

κ

J τ(κ)
[8]

should be as large as possible. For 0 ≤ κ ≤ 1, the theoretical limit τ ∗(κ) for the minimum

time required to create a propagator Uαβγ(κ) is given by (3)

τ ∗(κ) =

√

κ(4 − κ)

2J
, [9]

which corresponds to a maximum possible scaling factor

s∗(κ) =
2κ

√

κ(4 − κ)
. [10]

It is sufficient to consider τ ∗(κ) and s∗(κ) only for 0 ≤ κ ≤ 1, because τ ∗(2n±κ) = τ ∗(κ),

where n is an arbitrary integer (3).

Schematic pulse sequences corresponding to four different approaches for the creation of

Uzzz(κ) are shown in Fig. 1. These sequences can be further streamlined by reducing the

number of pulses using well known rules (vide infra).

Sequence A with duration

τA(κ) =
2 + κ

2J
[11]

is based on the identity (3)

Uzzz(κ) = exp{−iπI1zI2x} exp{−iπ κ I2yI3z} exp{iπI1zI2x}. [12]

Equivalent sequences (8) with the same duration τA(κ) but with less pulses can be con-

structed based on the identity

Uzzz(κ) = VA exp{−iπ κ I2zI3z} V −1
A . [13]
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with

VA = exp{−i
π

2
I2x} exp{−iπI1zI2z} exp{−i

π

2
I2y}. [14]

Equivalant sequence with the same duration τA(κ) can also be constructed using CNOT

operations (9).

Sequence B with duration

τB(κ) =
1

J
[15]

is based on the identity (6, 7)

Uzzz(κ) = VB exp{−i
π

2
κ I2x} V −1

B . [16]

with

VB = exp{−i
π

2
I2y} exp{−i π (I1zI2z + I2zI3z)}. [17]

Sequence C with duration

τC(κ) =
1 + κ

2J
[18]

is based on the identity (3)

Uzzz(κ) = VC exp{−i π κ (I1zI2y + I2yI3z)} V −1
C exp{i π

2
κ I2z}. [19]

with

VC = exp{−i
π

2
(I1zI2x + I2xI3z)}. [20]

Finally, the time-optimal sequence D with duration

τD(κ) = τ ∗(κ) =

√

κ(4 − κ)

2J
[21]

is based on the identity (3)

Uzzz(κ) = VD W exp{−iπ
√

κ(4 − κ)(I1zI2z + I2zI3z) + iπ(2 − κ)I2x} V −1
D [22]
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with

VD = exp{−i
π

2
I2y} [23]

and

W = exp{−iπ(2 − κ

2
)I2x}. [24]

The durations τ(κ) and scaling factors s(κ) = Jeff (κ)/J of sequences A-D are shown

in Fig. 2 and are summarized in Table 1. In all four sequences, I2-selective pulses are

required. In addition, I1-selective and I3-selective 180◦ pulses are required in sequence A

for selective decoupling of J12 and J23 during parts of the pulse sequence. In contrast,

sequences B-D do not require such I1-selective or I3-selective pulses, which simplifies the

experimental implementation of these pulse sequences if spins I1 and I3 are homonuclear.

These sequences are also suitable for applications, where spins I1 and I3 are equivalent, as

in I2S spin systems (6, 7). Furthermore, the fact that decoupling is avoided in sequences

B-D makes these experiments considerably more efficient than sequence A (vide infra).

Sequence B is a straight-forward generalization of a well-known pulse sequence developped

initially (6, 7) for the special case of κ = 1. Sequence C, which has been proposed recently

(3), is more efficient than sequence B. The geodesic pulse sequence (sequence D) has the

shortest possible duration for all values of κ (3), see Fig. 2 A (top panel). For κ → 0,

the duration of the geodesic pulse sequence approaches 0, in contrast to sequences A-C.

Fig. 2 (middle panel) shows the scaling factors s(κ) and Fig. 2 (bottom panel) shows the

relative scaling factors s(κ)/κ compared to the scaling factor of sequence B (sB = κ). For

κ = 1, the scaling factor s of the geodesic sequence is 73.2% larger compared to sequence

A and about 15.5% larger compared to sequences B and C. As κ approaches 0, the scaling

factor s of the geodesic pulse sequence becomes infinitely larger than the scaling factors

of sequences A-C. For example, for κ = 0.01 the scaling factor s of the geodesic sequence

is already about a factor of 10 larger compared to sequences A and B and about a factor

of 5 larger compared to sequence C.

6



The basic pulse sequences shown in Fig. 1 only create the desired unitary transformations

Uzzz(κ) if all spins are on-resonance in a multiple-rotating frame, i.e. if Hoff = 0 (c.f. Eq.

3). However, for most practical applications, a finite offset range must be covered by the

pulse sequences. Broadband versions of sequence B can be found in the literature (6, 7).

Broadband versions of sequences A (8) and C can be created in a straight-forward way

by inserting additional π pulses in the existing delays to refocus chemical shift evolution.

For example, a broadband version of sequence C is shown in Fig. 3. The robustness of the

broadband sequence with respect to rf inhomogeneity and offsets can be further improved

by using the x, −x, −x, x cycle (14) for the phases of the four π pulses which are applied

to spins I1 and I3.

Although no delays exist in the ideal geodesic pulse sequence shown in Fig. 1D, delays

can be introduced by replacing the weak pulse with amplitude νw = (2− κ)J/
√

κ(4 − κ),

duration τ ∗(κ) =
√

κ(4 − κ)/(2J), and flip angle αw = νwtw2π = (2 − κ)π by n hard

pulses with flip angle αw/n and n delays of duration ∆ = τ ∗(κ)/n. In the limit of n → ∞,

this DANTE-type (Delays alternating with Nutations for Tailored Excitation) (13) pulse

sequence creates the same effect as the weak pulse and with the same limited bandwidth.

For the present application, the DANTE-type sequence approaches the ideal sequence if

∆ ≪ 1/J . By inserting π pulses in the delays of the DANTE sequence (c.f. Fig. 4), a

broadband version of the geodesic pulse sequence can be created. As shown in Fig. 4,

the robustness of the broadband geodesic sequence with respect to rf inhomogeneity and

offset can be improved by using cycles or supercycles such as x, −x, −x, x (14) for the

phases of each set of four 180◦ pulses.

In addition to applications in polarization transfer experiments (6, 7), propagators corre-

sponding to trilinear effective coupling terms are useful in the field of quantum information

processing. For example, so-called Λ2 gates (15) can be implemented efficiently based on

Uzzz(κ) for κ = 1. Here, we focus on the implementation of SWAP operations (16, 17, 18)
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that make it possible to exchange arbitrary spin states of two spins in a coupling network.

For weakly coupled spins such as in the spin system defined in Eq. (2), a direct SWAP

gate such as SWAP(1, 2) or SWAP(2, 3) between directly coupled spins I1 and I2, or

between I2 and I3 has a minimum duration of (2)

τSWAP(1,2) = τSWAP(2,3) = 3/(2J). [25]

An indirect SWAP operation SWAP(1, 3) between spins I1 and I3, which are not directly

coupled, can always be realized based on the following combination of the direct SWAP

gates SWAP(1, 2) and SWAP(2, 3):

SWAP(1, 3) = SWAP(1, 2) SWAP(2, 3) SWAP(1, 2) [26]

with an overall duration

τ conv
SWAP(1,3) = 2 τSWAP(1,2) + τSWAP(2,3) = 9/(2J). [27]

However, the time-optimal realization of the indirect SWAP operation SWAP(1, 3) has a

duration of only (3)

τ ∗
SWAP(1,3) = 3 τ ∗(1) = 3

√
3/(2J) [28]

and hence requires only 57.7 % of the duration τ conv
SWAP(1,3) of the conventional sequence

(c.f. Eq. 27). This approach is based on the time-optimal realization of propagators

Uαβγ(κ) (c.f. Eq. 5), which create the desired indirect SWAP(1, 3) gate by the following

sequence of operations (3):

USWAP(1,3) = Uzzz(1) Uyzy(1) Uxzx(1) exp(i
π

2
I2z). [29]

Note that all terms in Eq. 29 mutually commute and hence in experimental implementa-

tions the order of the corresponding pulse sequnce elements is arbitrary. Based on pulse
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sequence elements for the realization of Uzzz(κ), the sequence of propagators in Eq. (29)

can be realized in a straight-forward way by the pulse sequence shown in Fig. 5 C. The fi-

nal 90◦−z rotations can either be implemented by a composite pulse such as 90◦x 90◦y 90◦−xor

by adjusting the phases of all following pulses and of the receiver (19). In general, z

rotations (by angle ϕ) can be implemented by an additional phase shift (by angle −ϕ) of

all following r.f. pulses that are applied to this spin and of the receiver phase for this spin

(19).

3 Experiments

In order to test the performance of the new geodesic pulse sequences, we used the spin

system of the amino moiety of [15N]-acetamide as a model system (see Fig. 6) that

corresponds closely to the model Hamiltonian H0 = Hc + Hoff defined in Eqs. (1-3).

[15N]-acetamide (Chemotrade GmbH) was dissolved in DMSO-d6 and all measurements

were performed on a Bruker 600 MHz DMX spectrometer (Bruker Analytik GmbH) at a

temperature of 298 K. Here, spins I1 and I3 correspond to the amino protons, whereas

I2 corresponds to the 15N spin with J12 = 88.8 Hz ≈ J23 = 87.3 Hz ≫ J13 = 2.9 Hz.

Additional 4J(1H,1 H) and 3J(1H,15 N)couplings (0.7 Hz and 1.2 Hz) of I1 and I2 to the

methyl protons of [15N]-acetamide are about two orders of magnitude smaller than the

1J(1H,15 N) couplings.

Compared to a fully heteronuclear spin system, the relatively small frequency difference

∆ν13 = 358 Hz of the amino protons (spins I1 and I3) makes it difficult to apply short

selective pulses to spin I1 that do not affect spin I3 (and vice versa) as required in sequence

A (and also for its broadband implementation using additional refocussing pulses). In our

experiments, we implemented spin-selective proton pulses by a combination of hard pulses

and delays. For example, if spin I1 is irradiated on resonance, a selective 180◦x(I1) pulse

can be implemented by the pulse sequence element
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90◦x(I1, I3) - δ - 180◦x(I2) - δ - 180◦x(I2) 90◦x(I1, I3),

where δ = 2/(4∆ν13) = 698 µs. Similarly, a selective 180◦x(I3) pulse can be implemented

by the same pulse sequence element if the last 90◦x(I1, I3) pulse is replaced by 90◦−x(I1, I3).

Based on broadband versions of sequences A, C, and D, we implemented the sequence

shown in Fig. 5 C, which realizes a SWAP(1, 3) operation for κ = 1. Note that the

sequence of Fig. 5 C still allows for a variation of κ, which makes it possible to test

the theoretically expected κ dependence of the sequences (vide infra). For κ = 1, the

sequences for the SWAP(1, 3) gate were successfully tested for a large number of initial

states of the spin system. Three illustrative examples are presented in Fig. 7, where

1H spectra of the amino protons (spins I1 and I3) of [15N]-acetamide are shown. Left

(A-C) and right (A′-C′) spectra reflect the states before and after an indirect SWAP(1, 3)

operation, repectively. The initial spin states were prepared to be ρ(0) = I1x (c.f. Fig.

7A), (B) ρ(0) = 2I1xI2z (c.f. Fig. 7 B), and (C) ρ(0) = I1x + 2I2zI3x (c.f. Fig. 7 C). As

expected, the states of the two proton spins (spins I1 and I3) are swapped for arbitrary

initial states.

In order to compare the durations and κ dependence of the indirect SWAP(1, 3) sequences,

we measured the efficiency of inphase transfer from I1x to I3x (c.f. Fig. 7 A): For an initial

density operator of ρ(0) = I1x, we defined the transfer efficiency η13(τ) for a given pulse

sequence of duration τ as

η13(τ) =
〈I3x〉(τ)

〈I1x〉(0)
, [30]

where 〈I1x〉(0) is the initial expectation value of I1x and 〈I3x〉(τ) is the expectation value of

I3x after the pulse sequence. The corresponding experimental values of η were determined

by dividing the integral of the spin I3 multiplet in the final spectrum by the integral of

the spin I1 multiplet in the initial spectrum.

Fig. 8 summarizes the theoretical and experimental curves of the transfer efficiency η13(τ)
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based on broadband versions of sequences, A, C, and D. In the experiments, the parameter

κ (c.f. Eq. 4) was varied in the range 0 ≤ κ ≤ 2. Fig. 8 A shows the theoretical τ

dependence of the transfer efficiency η13 for the pulse sequences of Fig. 1 A, C, and D,

assuming ideal spin-selective hard pulses without rf inhohogeneity and an isolated, ideal

three-spin system. All spins are assumed to be on-resonance (Hoff = 0) in a multiple

rotating frame with J12 = J23 = 88 Hz and J13 = 0 Hz. As expected (c.f. Table 1),

transfer efficiencies of η13 = 1 (corresponding to a complete SWAP operation) are found

for τ = 51.1 ms (sequence A), 34.1 ms (sequence C), and 29.5 ms (sequence D).

More realistic values of the transfer efficiency η13(τ) to be expected for our model sys-

tem were obtained by simulating the time evolution of the density operator during the

broadband pulse sequences for the actual coupling network (using the experimentally de-

termined coupling constants and frequency offsets) and taking into account experimental

pulse sequence parameters (see Fig. 8 B). Nominal rf amplitudes of 35.7 kHz and 5.5 kHz

were assumed for 1H and 15N pulses, respectively (corresponding to 90◦ pulse durations

of 7 µs and 45 µs). The effects of rf inhomogeneity were taken into account by assuming

a Gaussian distribution of the rf amplitudes with a full width at half hight of 10% (20).

Relaxation effects were not included. The simulated η13(τ) curves in Fig. 8 B qualita-

tively match the ideal curves shown in Fig. 8 A. In particular, the position of the maxima

appear at very similar pulse sequence durations τ . However, the amplitude of the η13(τ)

curves is decreased due to the effects of experimental imperfections.

In Fig. 8 C, experimentally determined transfer efficiencies η13(τ) are shown for the three

pulse sequences. A reasonable match is found between experimental and simulated curves.

The experimentally determined bandwidth covered by the broadband geodesic sequence

was about 3.5 kHz for 1H and 2.5 kHz for 15N for the given pulse sequence parameters.
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4 Discussion

Broadband versions of a new class of pulse sequences for the simulation of trilinear cou-

pling terms were developed. Using the amino group of [15N]-acetamide as a model system,

the theoretically predicted properties (3) of the new sequence C and of the time-optimal

geodesic sequence D were verified and efficient exchange of the spin state of indirectly cou-

pled spins was demonstrated. It is expected that the new broadband pulse sequences will

find applications both in quantum information processing and in coherent spectroscopy.
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[5] S. J. Glaser, T. Schulte-Herbrüggen, M. Sieveking, O. Schedletzky, N. C. Nielsen, O.

W. Sørensen, C. Griesinger, Unitary Control in Quantum Ensembles, Maximizing

Signal Intensity in Coherent Spectroscopy, Science 208, 421-424 (1998).

[6] O. W. Sørensen, Polarization transfer experiments in high-resolution NMR spec-

troscopy, Prog. NMR Spectrosc. 21, 503-569 (1989).

[7] A. Meissner, O. W. Sørensen, I-spin n-quantum coherences in InS spin systems em-

ployed for E.COSY-type measurement of heteronuclear long-range coupling constants

in NMR, Chem. Phys. Lett. 276, 97-102 (1997).

[8] C. H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T. F. Havel, D. G. Cory,

Quantum simulation of a three-body interaction Hamiltonian on an NMR quantum

computer, Phys. Rev. A, 61, 012302 (2000).

[9] J. Kim, J.-S. Lee, S. Lee, Implementing unitary operators in quantum computation,

Phys. Rev. A, 61, 032312 (2000).

[10] D. G. Cory, A. F. Fahmy, T. F. Havel, Ensemble quantum computing by NMR

spectroscopy, Proc. Natl. Acad. Sci 94, 1634-1639 (1997).

[11] N. Gershenfeld, I, L. Chuang, Bulk spin-resonance quantum computation, Science

275, 350-356 (1997).

[12] C. H. Bennet, D. P. DiVinvenzo, Quantum information and computation, Nature

404, 247-255 (2000).

[13] G. A. Morris, R. Freeman, Selective excitation in Fourier transform nuclear magnetic

resonance, J. Magn. Reson. 29, 433-462 (1978).

[14] M. H. Levitt, R. Freeman, T. Frenkiel, Broadband decoupling in high-resolution

nuclear magnetic resonance spectroscopy, in ”Advances in Magnetic Resonance” (J.

S. Waugh, Ed.), Vol. 11, pp. 47 - 110, Academic Press, San Diego (1983).

13



[15] A. Barenco, C.H. Bennett, R. Cleve, D.P. Divincenzo, N. Margolus, P. Shor, T.

Sleator, J. Smolin and H. Weinfurter, Elementary gates for quantum computation,

Phys. Rev. A 28 (1996).
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[18] Z. L. Mádi, R. Brüschweiler, R. R. Ernst, One-and two-dimensional ensemble quan-

tum computing in spin Liouville space, J. Chem. Phys. 109, 10603-10611 (1998).

[19] R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel and S. J. Glaser, Approaching

Five-Bit NMR Quantum Computing, Phys. Rev. A, 62, 012310/1-8 (2000).

[20] S. J. Glaser and J. J. Quant, Homonuclear and heteronuclear Hartmann-Hahn trans-

fer in isotropic liquids, in ”Advances in Magnetic and Optical Resonance” (W. S.

Warren, Ed.), Vol. 19, pp. 59 - 252, Academic Press, San Diego (1996).

14



Table 1: Pulse sequence durations τ and scaling factors s = Jeff (κ)/J of effective trilinear

coupling constants.

A B C D

τ(κ) 2+κ
2J

1
J

1+κ
2J

√
κ(4−κ)

2J

τ(1) 1.5
J

1
J

1
J

√
3

2J
≈ 0.866

J

s(κ) 2κ
2+κ

κ 2κ
1+κ

2κ√
κ(4−κ)

s(1) 2
3
≈ 0.666 1 1 2√

3
≈ 1.155

τSWAP(1,3)(J) 4.5
J

3
J

3
J

3
√

3
2J

≈ 2.598
J

τSWAP(1,3)(88Hz) 51.1 ms 34.1 ms 34.1 ms 29.5 ms
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I2
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I2

I3
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1
2J

1
2J

κ
2J

κ
2J

1
4J

1
4J

τ*

θ
4

( 2
θ2π−
(

y -y x -x -y yx

x -x

xx -x-x

y y-y-y -xx

-y y
)-x

)x4θ2π−

I2
1
2J

1
2J

y -y( )x4θ  π− -x

A

D

C

B

Figure 1: Schematic representation of four basic (narrowband) pulse sequences for the cre-

ation of a propagator Uzzz(κ) = exp{−i θ I1zI2zI3z} with θ = 2πκ. If not explicitely spec-

ified otherwise, narrow and wide vertical bars represent spin-selective π/2 and π pulses,

respectively. (A) Example of a pulse sequence based on selective decoupling (3, 8, 9), (B)

conventional pulse sequence without decoupling (6, 7), (C) improved sequence without

decoupling (3), (D) time-optimal geodesic pulse sequence with τ ∗ =
√

κ(4 − κ)/2J (3).
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κ
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B

D

0.5 1
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1.5

0

0

κ
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C
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D

D

τ/J
-1

Figure 2: Durations τ(κ) (top panel), scaling factors s = Jeff (κ)/J = κ/Jτ(κ) (middle

panel), and relative scaling factors s/sB = s/κ (bottom panel) of the four basic pulse

sequences A-D shown in Fig. 1.
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I2

κ
2J

1
4J

1
4J

θ
4

y x -y
-x

x

xx x x

x x x

I  , I1 3

Figure 3: Broadband version of sequence C shown in Fig. 1.

I  ,1

I2

I3

m

x x-x -x

x x-x -x
-x -x -x-x-y y

4( )
x

θ2π−

∆ ∆∆∆

Figure 4: Broadband version of the geodesic sequence shown in Fig. 1D for the time-

optimal implementation of Uzzz(κ). The pulse sequence element in brackets has a duration

of 4∆ and is repeated m times. The narrow vertical bars in the bracket correspond to

hard pulses with flip angles 2πνwτ ∗/n and ∆ = τ ∗/n with n = 4m.
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Figure 5: Pulse sequences implementing the indirect SWAP operation USWAP(1,3) for κ =

1. (A) Schematic implementation according to Eq. 29, (B) equivalent implementation

based on pulse sequence elements (c.f. Fig. 1) that create the propagator Uzzz(κ), (C)

streamlined pulse sequence with a minimum number of 90◦ pulses.
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Figure 6: The model system (top) consisting of a chain of three coupled spins 1/2 with

J12 = J23 = J and J13 = 0 is approximated by the spins of the amino moiety (printed in

boldface) of [15N]-acetamide (bottom).
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Figure 7: 1H spectra of the amino protons (spins I1 and I3) of [15N]-acetamide before

(A-C) and after (A′-C′) an indirect SWAP(1, 3) operation based on Fig. 5 C and the

broadband sequence shown in Fig. 3 for the creation of Uzzz(κ) for κ = 1. The initial spin

states were prepared to be (A) ρ(0) = I1x, (B) ρ(0) = 2I1xI2z, and (C) ρ(0) = I1x+2I2zI3x,

respectively.
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Figure 8: Transfer efficiency η13(τ) (c.f. Eq. 30) based on broadband versions of sequences,

A (dotted curves), C (dashed curves), and D (solid curves). (A) Theoretical curves

assuming an ideal spin system (see Fig. 6 top) and ideal rf pulses, (B) simulations based

on the coupling constants of [15N]-acetamide and assuming finite pulse durations and

realistic rf inhomogeneity (see text), (C) experimental transfer curves.
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