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ABSTRACT 

Residual dipolar couplings (RDC) have recently found a wide range of applications in high 

resolution NMR of biomolecules in the liquid state. A non-isotropic orientational distribu-

tion of a molecule of interest results in non-zero average dipolar coupling constants. Here, 

we present an intuitive introduction to the alignment tensor and an elementary derivation of 

key equations. 
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INTRODUCTION 

 

While dipolar couplings are the dominant interactions in solid state NMR of spin 1/2 nu-

clei, they are averaged to zero for isotropically reorienting molecules in the liquid state. 

This makes it possible to achieve high-resolution spectra with relative ease in liquid state 

NMR. On the other hand, a wealth of structural information is lost if dipolar couplings van-

ish. However, even in liquid state NMR, molecules can be partially aligned,  

e. g. by external fields (magnetic or electric) or by anisotropic solvents (1-8). For example 

in liquid crystalline solvents, the dissolved molecules are partially aligned through steric 

and anisotropic interactions with the solvent molecules, and dipolar couplings can be ob-

served (9, 10). The recent success and wide use of such residual dipolar couplings is due to 

the development and characterization of several new alignment media such as bicelles (5), 

filamentous phage Pf1 (11), and polyacrylamide gels (12, 13), which make it possible to 

create a relatively small, tunable degree of alignment. This allows the spectroscopist to 

adjust the alignment in such a way, that the size of the average dipolar coupling is in the 

order of the J couplings. In this case, the resulting spectra are still simple, and dipolar cou-

pling constants can be measured relatively easy by comparing line splittings in isotropic 

and in aligned samples. Techniques to measure residual dipolar couplings and a wide range 

of applications have been discussed in a number of articles and reviews (2-8). 

 

Here, we revisit the fundamental question of how to calculate the expected residual dipolar 

coupling constant for a homonuclear (e.g. 1H-1H) or heteronuclear (e.g. 15N-1H) spin pair. 

This turns out to be a surprisingly simple calculation if we know the orientation and the 

three principal components of the so-called alignment tensor. This alignment tensor is a 

key concept, that is crucial to understand residual dipolar couplings. However, in our expe-

rience, many students and even seasoned practitioners in the field of NMR have conceptual 
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difficulties to fully understand the physical meaning of the alignment tensor which some-

times lead to serious misconceptions (vide infra). This may result in part from the common 

practice in literature, to derive the alignment tensor using mathematically elegant, but not 

very intuitive approaches based on spherical harmonics, their addition theorems, Legendre 

polynomials, Wigner rotation matrices and a confusing number of angles between various 

axes.  

 

In contrast, we here use a streamlined geometric approach similar to the original derivation 

by Saupe (9, 10), which is based on the Cartesian representation of vectors. Except for the 

most basic rules of matrix and vector multiplication, only elementary mathematics is 

needed to derive the alignment tensor. As a didactical aid on the way to understanding the 

alignment tensor, we discuss the related probability tensor. Numerical examples and illus-

trating figures are used to convey the physical meaning of these tensors. In the Appendix, 

various expressions for the residual dipolar coupling constants commonly found in litera-

ture are derived from the presented key results. 

 

STATIC DIPOLAR COUPLING HAMILTONIAN 

 

We consider two spins I and S with an internuclear vector R
v

 (see Fig. 1). This vector can 

be expressed in the form 

 

r R
vv

R= ,            [1] 

 

where R is the distance between the two nuclei and r 
v

 is a unit vector pointing in the direc-

tion of R
v

. Similarly, the vector representing the external magnetic field B
v

 can be ex-

pressed in the form 
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b B
vv

B= ,            [2] 

 

where B is the magnitude of the static magnetic field, and b
v

 is a unit vector pointing in the 

direction of the magnetic field. In the lab frame ( L
x , L

y , L
z ), where by convention the 

magnetic field points along the L
z  axis, the (truncated) dipolar coupling Hamiltonian has 

the form (14) 
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If  the spins I and S are heteronuclear, the second and third term in the bracket can be ne-

glected, resulting in the simpler weak dipolar coupling Hamiltonian 

 

LL2
zzD
SDI!=H           [4] 

 

(which has the same form as the weak heteronuclear J coupling Hamiltonian). In both 

cases, the dipolar coupling constant (which in the weak coupling limit corresponds directly 

to the experimentally observed line splittings in units of Hz) is given by (14): 
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where !  is the angle between the internuclear vector and the magnetic field (see Fig. 1). 

The term   
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only depends on physical constants (14): the gyromagnetic ratios 
I
!  and 

S
!  of spin I and S  

respectively, the Planck constant !2/h=h  and the permeability of vacuum 
0

µ . For ex-

ample, for 1H-1H,  13C-1H  and 15N-1H  spin pairs, " = 3
Å kHz 360.3- , 3

Å kHz 90.6-  and 

3
Å kHz 36.5 , respectively. The maximum possible value of !2cos  is 1 (for !" or  0= ), 

and hence, according to Eq. [5], the maximum possible dipolar coupling constant is  

 

33

max / )3/2()3/11(/ RRD !! ="= ,                 [7] 

 

which corresponds e. g. to 21.7 kHz for a 15N-1H  spin pair with distance Å 04.1=R . 

 

Remember that the scalar product between two unit vectors is identical to the cosine of the 

angle !  between the two vectors. Hence, the term !cos  in Eq. [5] can always be expressed 

in the form 

 

r bcos
T vv

=! .            [8] 

 

Here, T
b
v

 is a row vector (the transpose of the column vector b
v

) which allows us to write 

the scalar product of the two vectors as a usual matrix product between the 1x3 matrix T
b
v

 

and the 3x1 matrix r
v

 (vide infra). 
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TIME-DEPENDENT AND AVERAGE  DIPOLAR COUPLING HAMILTONIAN 

 

Now we consider the two spins I and S to be part of a molecule in solution. In the lab 

frame, the magnetic field vector B
v

 is constant (pointing along the L
z  axis), but the inter-

nuclear vector R
v

 is now time-dependent (see Fig. 2 A). For simplicity, we assume that the 

molecule is rigid (no internal dynamics and constant distance R), such that the time-

dependence of R
v

 is solely due to the rotational tumbling motion of the molecule. Hence, 

the term !cos  (and as a result also the dipolar coupling constant D and the dipolar cou-

pling Hamiltonian) is time-dependent. For proteins, the rotational correlation time is in the 

order of nanoseconds and on the time-scale of the NMR experiment, only the time-

averaged dipolar Hamiltonian 
D

H  gives rise to splittings in the spectrum (relaxation ef-

fects caused by the fluctuations of the dipolar Hamiltonian will not be considered here).  

The time-averaged dipolar coupling constant  

 

!
"

#
$
%

&
'=
3

1
cos

2

3
(

)

R
D           [9] 

 

represents the so-called residual dipolar coupling constant, which depends on the average 

alignment of the molecule.  

 

OUTLINE AND KEY RESULTS 

 

The goal of this manuscript is to derive a general approach for the calculation of D  for any 

pair of spins if the “alignment properties” of the molecule are known. Before we go into the 

formal derivation, we give a brief outline of the steps and state the final result. First, we 

move from the lab frame ( L
x , L

y , L
z ) (c.f. Fig. 2 A) to a frame of reference (x, y, z) that is 
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fixed to the molecule. In this frame of reference, the term !2cos  can be conveniently ex-

pressed with the help of a probability tensor P, which is a second order approximation of 

the orientational probability distribution of the direction of the external magnetic field in 

the molecular fixed frame of reference (6, 15). This probability tensor P can be represented 

by an ellipsoid (c.f. Fig. 3 A) with a fixed orientation in the chosen molecular frame (x, y, 

z). The principal values 
x
P~ , yP~  and 

z
P~  of the probability tensor (i.e. the lengths of the half 

axes of the probability ellipsoid) are the probabilities to find the magnetic field along the 

corresponding principal axes of the probability ellipsoid, and hence 
x
P~ + yP~ +

z
P~ =1.  

 

For example, for an isotropically reorienting molecule, 
x
P~ = yP~ =

z
P~ =1/3, and the probabil-

ity ellipsoid is reduced to a sphere (see Fig. 4 C). On the other hand, if a molecule is fully 

aligned, 
x
P~ = yP~ =0 and 

z
P~ =1 (by convention, the principal elements are ordered with in-

creasing magnitude), i.e. the probability tensor is reduced to a single line in the direction of 

the magnetic field. 

 

In general, the principal axes of the probability ellipsoid define a special molecular fixed 

axis system ( x~ , y~ , z~ ), in which the calculation of residual dipolar coupling constants is 

especially simple (see Fig. 3 B): If we know the three Cartesian components 
x
r~ , 

y
r~  and 

z
r~  

of any given internuclear unit vector r
v

 in this principal axis system, the term !2cos  in Eq. 

[8] is simply given by  

 

222

~~~~~~
2

cos zzyyxx rPrPrP ++=! .                 [10] 
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If this simple equation (derived below) is inserted into Eq. [9], the residual coupling con-

stant can be predicted for any arbitrary spin pair in a molecule, as long as the orientation 

and principal values of the probability tensor are known.  

 

With this key result, we can calculate everything, and we could stop here, except that re-

sidual dipolar coupling constants are commonly not expressed in terms of the introduced 

probability tensor P (corresponding in general to a real symmetric 3x3 matrix with trace 1) 

but in terms of its traceless part (its “resolvent”)  1P 3/1! , which is called the alignment 

tensor A (5): 

 

.
3

1
1PA !=                     [11] 

 

The three principal components 
x
A~ , yA~  and 

z
A~  of the alignment tensor A are simply given 

by 

 

3

1
~~ !=
xx
PA ,        

3

1
~~ != yy PA ,       

3

1
~~ !=
zz
PA ,               [12] 

 

and the principal axes of A and P are identical.  

 

Note that in contrast to the probability tensor P (see Figs. 3 and 4), the alignment tensor A 

cannot be represented as an ellipsoid, because one or two of the principal components 
x
A~ , 

yA~ , and 
z
A~  of the alignment tensor are negative if any of the three components is nonzero 

due to 0~~~ =++ zyx AAA . Alternative graphical representations of the effects of the align-

ment tensor are shown in Figs. 5 and 6 (vide infra). 
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In terms of the principal components of the alignment tensor, the term )3/1cos( 2
!"  in the 

equation for the residual dipolar coupling constant (Eq. [9]) can be expressed as 
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If this equation is inserted into Eq. [9], it is again possible to predict the residual coupling 

constant for any arbitrary spin pair in a molecule, provided that the orientation and princi-

pal values of the alignment tensor are known.  

 

Conversely, the alignment tensor A (or the probability tensor P) can be determined if a 

sufficient number of experimental dipolar coupling constants are measured for a given 

molecule (16). As will be shown below, the alignment tensor A (and the probability tensor 

P) is characterized by five independent parameters. Therefore, at least five dipolar coupling 

constants need to be measured in order to determine the five unknown parameters (16). In 

many cases, it is also possible to accurately predict the alignment tensor A (17) or the 

probability tensor P for a given molecule in a given liquid crystalline solvent, and hence to 

predict the expected dipolar coupling constants for a proposed molecular structure from 

first principles. 
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DERIVATION OF THE PROBABILITY AND ALIGNMENT TENSORS 

 

In an arbitrarily chosen molecular frame with axes (x, y, z) (see Fig. 2 B), a given internu-

clear vector R
v

 is constant (still assuming a rigid molecule without internal dynamics): 

 

. r R

!
!
!

"

#

$
$
$

%

&

==

z

y

x

r

r

r

RR
vv

                                                    [14]                                                       

 

However, in this frame of reference, the direction of the magnetic field vector B
v

 is time-

dependent if the molecule tumbles in solution: 
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The definition of !cos  via the scalar product of the unit vectors b
v

 and r
v

 (c.f. Eq. [8]) is 

valid in any frame of reference. Hence, we can express !cos  in the molecular frame as a 

function of the components of the unit vectors b
v

 and 
r
v

, which point in the (varying) direc-

tion of the magnetic field B
v

 and of the (constant) internuclear vector R
v

, respectively: 
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and 
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Note that Eq. [17] can also be expressed in the form  
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Hence, the time average of !2cos  is given by 
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We call the matrix 
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the probability matrix. For a known probability matrix P, the residual dipolar coupling 

constant (Eq. [9]) is given by 
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The matrix P is real, symmetric, and has a trace of 1 because  

 

{ } ( ) 1)()()()()()(tr 222222 =++=++=++= tbtbtbtbtbtbPPP zyxzyxzzyyxxP             [22] 

 

since by definition, b
v

 is a unit vector, and hence, 1)()()( 222
=++ tbtbtb zyx  for all times t. 

Therefore, P is fully specified by only five independent parameters. The matrix P can be 

represented graphically as an ellipsoid (see Fig. 3 and 4). The three principal axes x~ , y~  

and z~  of this ellipsoid are defined by the three eigenvectors of the matrix P and the lengths 

of the three half axes are defined by the eigenvalues 
x
P~ , yP~  and 

z
P~  (see Fig. 3 A). 

 

In the special frame of reference defined by this principal axis system (see Fig. 3 B), the 

matrix P is diagonal: 
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In this case the eigenvalues (principal values) 
2

~~
xx
bP = , 

2

~~ yy bP =  and 
2

~~
zz
bP = are the prob-

abilities to find the magnetic field along the principal axes x~ , y~  and z~ , respectively. 

Therefore we call P simply the probability tensor. (Rigorously, P corresponds to the sum 

of the zero and second order term of a spherical harmonics expansion of the probability 
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distribution function describing the orientation of a reference vector relative to a rigid body 

(4, 15)).  

 

In the principal axis system, Eq. [21] for the calculation of the residual dipolar coupling 

reduces simply to  
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For example, in the static case, 
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The matrix has a much simpler form in the principal axis frame ( x~ , y~ , z~ ) where the z~  

axis is parallel to the vector b
v

. In this reference frame, 
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In this case, the probability ellipsoid is reduced to a line along the z~  axis and the dipolar 

coupling constant is  
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For a completely isotropically reorienting molecule, the averages )()( tbtb yx , )()( tbtb
zx

, 

)()( tbtb zy  are zero, and 3/1~~~ === zyx PPP , i. e. the probability matrix 
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is diagonal in any molecular fixed frame of reference. Hence, there is an equal probability 

of 1/3 for the magnetic field direction to point along all three axes of reference. The corre-

sponding probability ellipsoid is a sphere with radius 1/3 (see Fig. 4 C), and the residual 

dipolar coupling constant is  
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Fig. 4 A shows an example of an axially symmetric probability ellipsoid with the principal 

values 25.0~~ == yx PP  and 5.0~ =
z
P . Fig. 4 B shows an example without axial symmetry 

where 2.0~ =
x
P , 3.0~ =yP  and 5.0~ =

z
P . Note that the lack of axial symmetry simply means 

that there are two different probabilities yx PP ~~ !  for the magnetic field to point along the 

principal axes  x~  and y~  of the molecular-fixed probability tensor. However, this does by 

no means imply that in the lab frame there are different probabilities for the molecule to be 
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aligned along the L
x  or L

y  direction. For example in the case shown in Fig. 4 B, 2.0~ =
x
P , 

3.0~ =yP  and 5.0~ =
z
P  are the probabilities that the x~ , y~  and z~  axes are aligned parallel 

to 
0
B . 

 

In the NMR literature, it is not customary to consider the probability tensor P (which can 

be nicely depicted as an ellipsoid), but to use its traceless part which is called the alignment 

tensor 
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3

1
!= .                    [30] 

 

If we multiply A from the left with the unit row vector T
r
v

 and from the right with the col-

umn vector r
v

 and using Eq. [19] and Eq. [30], we get 
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which can also be used to calculate the residual dipolar coupling constant in Eq. [21]: 
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P and A have the same principal axis system ( x~ , y~ , z~ ) (except for a possible reordering 

of the axis labels if the convention is used that zyx PPP ~~~ !!  and zyx AAA ~~~ !! ), and the 

principal values are related by 

 

3

1
~~ !=
xx
PA , 

3

1
~~ != yy PA , 

 

and  

 

3

1
~~ !=
zz
PA ,                    [33] 

 

with .0~~~ =++ zyx AAA  

In the principal axis system 
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and hence, the residual dipolar coupling constant is given by 
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The alignment tensor cannot be represented as an ellipsoid, because at least one of the 

principal values is always negative if 0!A . 
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In Fig. 5, we show a graphical representation of the A tensors which correspond to the P 

tensors shown in Fig. 4. The plots show the surfaces where the term 
3

T
r r

R

vv
 A

 is constant. 

Hence, if spin I is assumed to be located in the origin, the plots show the possible locations 

of spin S for which the residual dipolar coupling constant has the same magnitude. For the 

case of an isotropically reorienting molecule (spherical probability tensor), the residual 

dipolar coupling is always zero, and no such surface exists. 

 

The dependence of the scaling factor ( 3/1cos
2

!" ) on the orientation of the internuclear 

vector is sometimes shown by the color of a unit sphere. For the three cases shown in Fig. 4 

and 5, the corresponding grayscale coded surface representations of the alignment tensors 

are shown in Fig. 6. The grayscale intensity represents the scaling factor of a residual dipo-

lar coupling constant if spin I is located at the origin and spin S is moved over the surface, 

i. e. assuming a constant internuclear distance.  

 

For example, in the axially symmetric case shown in Fig. 6 A with 12/1~~ !== yx AA  and 

6/1~ =
z
A , the scaling factor ( 3/1cos

2
!" ) is zero if the z~ -component of the internuclear 

vector is 3/1~ =
z
r , which is straightforward to see if Eq. [34] is set to zero and using 

2
~

2
~

2
~ 1

zyx
rrr !=+ . This corresponds to an angle of °== 74.543/1arccos!   (the  magic 

angle)  between the internuclear vector and the z~ -axis.  For the case shown in Fig. 6 B 

with 15/2~ !=
x
A , 30/1~ !=yA  and 6/1~ =

z
A  , the polar angle ! , when the scaling factor is 

zero, depends also on the azimuthal angle !  between the x~ -axis and the projection of r
v

 

on the x~ / y~  plane. For example, in the x~ / z~  plane, the scaling factor is zero if 3/2~ =
z
r  
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(corresponding to ( ) °== 19.483/2arccos! ), and in the y~ / z~  plane, the scaling factor is 

zero if 6/1~ =
z
r  ( °== 91.656/1arccos! ). In the isotropic case shown in Fig. 6 C, the 

scaling factor )3/1cos( 2
!"  is zero for all orientations of the internuclear vector R

v
. 

 

APPENDIX 

 

In the appendix, the key equations (Eq. [24] and Eq. [35]) for the calculation of the residual 

dipolar coupling constant D  are reexpressed in various forms found in literature. If the unit 

vector r
v

 is defined in terms of the polar coordinates !  and !  in the principal axis system 

of the alignment tensor A, then  
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and hence (according to Eq. [34]): 
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This can be simplified by noting that ( ) 2/2cos1cos
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Since A is a traceless matrix, zyx AAA ~~~ !=+ , and we can rewrite Eq. [38] as                                                                                                               

 

.2cossin
22

sin
cos

3

1
cos

2
~~

2

2
~

2 !"
"

"# yx

z

AA
A

$
+%%
&

'
((
)

*
$=%

&

'
(
)

*
$                                                [39] 

 

The pre-factor of 
z
A

%
can be further simplified by using the relation !! 22

cos1sin "= : 

 

( )

( ).1cos3
2

1
                         

2

cos1
cos

2

sin
cos

2

2

2

2

2

!=

!
!=!

"

"
"

"
"

                                                                                [40] 

 

Thus, we arrive at 

 

( ) .2cossin
2

1cos3
23

1
cos

2
~~

2~2 !""# yxz
AAA $

+$=%
&

'
(
)

*
$                                                       [41] 

 

Eq. [41] can alternatively be expressed in terms of the principal values 
x
S

%
, yS %

 and 
z
S

%
 of 

the Saupe matrix (or order matrix) S, which is simply the alignment matrix A scaled by a 

factor of 3/2, if the optical axis of the liquid crystal is collinear with the direction of the 

magnetic field (9, 10):  

 

S = 3/2 A.                     [42] 

 

Hence,  
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( ) ( ){ }.2cossin1cos3
3

1

3

1
cos

2
~~

2
~

2 !""# yxz SSS $+$=%
&

'
(
)

*
$                                                  [43] 

 

Often, the axial component 
a
A  of the alignment tensor is defined as (5) 

 

,
2

3
~~
zza
SAA ==                                                                                                                    [44] 

 

and the rhombic component 
r
A  of the alignment tensor is defined as 

 

( ).
3

2
~~~~ yxyxr SSAAA !=!=                                                                                                   [45] 

 

With these definitions, we can express Eqs. [41] and [43] as 

 

( ) ,2cossin
2

3
1cos3

3

1

3

1
cos

222

!
"
#

$
%
&

+'=(
)

*
+
,

-
' .//0

ra
AA                                                       [46] 

 

which in turn is often written as 

 

( )

( ){ }!"#"

!""$

2cossin1cos3
3

                    

2cossin
2

3
1cos3

33

1
cos

22

222

+%=

&
'
(

)
*
+

+%=,
-

.
/
0

1
%

a

a

A

R
A

                                                         [47] 

 

where  
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a

r

A

A
R =                                                                                                                                 [48] 

 

is called the rhombicity of the alignment tensor and   

 

R
S

SS

A

AA

z

yx

z

yx

2

3

~

~~

~

~~

=
!

=
!

="                   [49] 

 

is called the asymmetry parameter which describes the deviation from axially symmetric 

ordering (6).  

 

So far, we have assumed a rigid molecule that tumbles in solution. In the presence of inter-

nal motions the derivation of residual dipolar couplings becomes more complicated (6, 18, 

19). Provided the alignment process is not affected by intramolecular motion, the analysis 

is relatively straightforward. If the internal motion of the internuclear vector r
v

 is axially 

symmetric with respect to the average orientation 
av
r
v

, the dipolar coupling expected for this 

average orientation is scaled by a factor ! , which is identical to a generalized order pa-

rameter S (0 !  S !  1) (18). The latter corresponds mathematically to the spin relaxation 

order parameter (19, 20), but exhibits a sensitivity to motions extending to the millisecond 

time scale (6, 18). This leads to the following equation of the residual dipolar coupling con-

stant: 

 

( ){ }.2cossin1cos3
3

22

3
!"#"

$
+%=

R

A
SD

a                                                                        [50] 
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This expression is often rewritten using the maximum dipolar coupling 3

max /)3/2( RD !=  

(c. f. Eq. [7]) or the so called magnitude of the residual dipolar coupling tensor 

2/
max aa
ADD =  (7): 

 

( ){ }

( ){ }

( ) ,2cossin
2

cos    

2cossin1cos3
2

    

2cossin1cos3

2

2max

22max

22

!
"
#

$
%
&

+=

+'=

+'=

()
*

)

()*)

()*)

PASD

A
D

S

DSD

a

a

a

                                                                 [51] 

 

where 2/)1cos3()( 2

2 != xxP  is the second-order Legendre polynomial.  

 

Finally, we use the results derived in this manuscript to introduce the concepts of the gen-

eralized degree of order (GDO) of a given alignment tensor A (22) and the generalized 

angle between two different alignment tensors )1(
A  and )2(

A (23). 

 

In complete analogy to the scalar product between two real vectors, the scalar product be-

tween two real matrices (e. g. two alignment matrices )1(
A  and )2(

A ) is defined as 

 

!=
ji

ijij AA
,

)2()1()2()1( | AA                    [52] 

 

and the norm A  of the real matrix A is given by 

 

.|
,

2!==
ji

ijAAAA                   [53] 
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The maximum order is found for the static case, where the probability tensor 
max
P  is given 

by Eq. [26] in the principal axis system. The corresponding maximum alignment tensor 

1PA 3/1
maxmax

!=  has the form 

 

.

3/200

03/10

003/1

max

!
!
!

"

#

$
$
$

%

&

'

'

=A                  [54] 

 

The norm of 
max

A  is given by 

 

.
3

2

9

4

9

1

9

1

max
=++=A                   [55] 

 

The generalized degree of order (GDO) of a given order matrix A  can be defined as  

 

.
2

3
GDO

max

A
A

A
==                   [56] 

 

In terms of the Saupe matrix AS 2/3=  (c. f. Eq. [42]), this can be written as (6, 22) 

 

.
3

2
GDO S=                    [57] 

 

In literature, the symbol “! ” is often used for the GDO but we do not use the symbol here 

in order to avoid confusion with the polar angle !  defined in Eq. [36]. 
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The GDO is independent of the molecular-fixed frame, in which the alignment tensor A  is 

expressed. In the principal axis system only the diagonal elements of A  are nonzero and  

Eq. [56] simplifies to  

 

.
2

3
GDO

2
~

2
~

2
~ zyx AAA ++=                   [58] 

 

For axially symmetric alignment tensors ( 2/~~~ zyx AAA !== ) this simplifies further to (22): 

 

.
2

3
         

2

3

4

1

4

1

2

3
GDO

~~

2
~

2
~

2
~

2
~

zz

zzzz

SA

AAAA

==

=!
"

#
$
%

&
++=

                [59] 

 

With the help of the scalar product, we can also define the generalized angle !  between 

two alignment tensors )1(
A  and )2(

A  which correspond e. g. to two different alignment 

media. 

 

If the matrix representations of )1(
A  and )2(

A  are given in a common molecular frame of 

reference, the cosine of the generalized angle !  between these alignment tensors can be 

defined as the normalized scalar product between them (23): 

 

.
 |

  cos
)2()1(

)2()1(

AA

AA
=!                    [60] 
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FIGURE CAPTIONS 

 

Figure 1:  

Definition of the angle !  between the internuclear vector R
v

 (connecting spins I 

and S) and the magnetic field vector B
v

.  The unit vectors r
v

 and b
v

 point in the di-

rection of R
v

 and B
v

, respectively. 

Figure 2:  

Effect of molecular tumbling of a rigid molecule as seen (Panel A) from the lab 

frame of reference (with axes L
x , L

y , L
z ) and (Panel B) from an arbitrary molecu-

lar frame of reference (with axes x, y, z). In the lab frame (Panel A), the magnetic 

field B
v

 is constant and points by definition along the L
z  axis, whereas the internu-

clear vector R
v

 keeps changing its direction. In a molecular frame (Panel B), the 

situation is reversed: here, any given internuclear vector is constant, whereas the 

orientation of the magnetic field is time-dependent. 

Figure 3:  

The molecule, a given internuclear vector R
v

 and the probability ellipsoid (a 

graphical representation of the probability tensor P, c.f. Eq. [25]) are shown (Panel 

A) in an arbitrarily chosen molecular frame (c.f. Fig. 2 B) and (Panel B) in the spe-

cial coordinate system (with axes x~ , y~ , z~ ) defined by the principal axes of the 

probability ellipsoid.  

Figure 4:  

Examples of three characteristic probability ellipsoids (graphical representations of 

the probability tensor P, c.f. Eq. [25]) as seen from the principal axis system with 

axes x~ , y~ , z~  (c.f. Fig. 3 B). Panel A shows an axially symmetric probability ellip-

soid with 
x
P
%
 = yP%  = 0.25 and 

z
P
%
 = 0.5 (Panel A). Panel B depicts a rhombic prob-
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ability ellipsoid with 
x
P
%
 = 0.2,  yP%  = 0.3 and 

z
P
%
 = 0.5. Panel C shows an isotropic 

probability ellipsoid with 
x
P
%
 = yP%  = 

z
P
%
 = 1/3. 

 

Figure 5:  

Graphical representations of the alignment tensors (Panel A) which correspond to 

the three probability tensors shown in Fig. 4 A-C. The principal components of the 

alignment tensor are (A) 12/13/125.0~~ !=!== yx AA , 6/13/15.0~ !=!=
z
A , (B) 

15/23/12.0~ !=!=
x
A , 30/13/13.0~ !=!=yA , 6/13/15.0~ =!=

z
A  and (C) 

03/13/1~~~ =!=== zyx AAA . The plots show the surfaces where ( ) -33T
Å1/rr =R

vv
A  

(light gray) or -1 -3
Å  (dark gray) if the x~ , y~  and z~  axes are labelled in units of Å. 

 

Figure 6:  

For the three cases shown in Fig. 4 and 5 with (A) 12/1~~ !== yx AA , 6/1~ !=
z
A , 

(B) 15/2~ !=
x
A , 30/1~ !=yA , 6/1~ =

z
A  and (C) 0~~~ === zyx AAA  the magnitude 

of the scaling factor )3/1cos( 2
!"  is coded on a unit sphere as a function of the 

orientation of the internuclear vector R
v

 (white: vanishing scaling factor). Positive 

and negative scaling factors are denoted by the respective sign.  
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