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Abstract

Many applications of magnetic resonance are limited by rapid loss of spin coherence caused by large

transverse relaxation rates. In nuclear magnetic resonance (NMR) of large proteins, increased relax-

ation losses lead to poor sensitivity of experiments and increased measurement time. In this paper

we develop broadband relaxation optimized pulse sequences (BB-CROP) which approach funda-

mental limits of coherence transfer efficiency in the presence of very general relaxation mechanisms

that include cross-correlated relaxation. These broadband transfer schemes use new techniques of

chemical shift refocusing (STAR echoes) that are tailored to specific trajectories of coupled spin

evolution. We present simulations and experimental data indicating significant enhancement in the

sensitivity of multi-dimensional NMR experiments of large molecules by use of these methods.
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1 Introduction

The loss of signal due to spin relaxation [1] is a major problem in many practical applications of

magnetic resonance. An important application is NMR spectroscopy of proteins [2, 3]. Multidi-

mensional coherence transfer experiments in protein NMR are characterized by large transverse

relaxation rates. When these relaxation rates become comparable to the spin-spin couplings, the

efficiency of coherence transfer is considerably reduced, leading to poor sensitivity and limiting the

size of macro molecules that can be analyzed by NMR. Recent advances have made it possible to

significantly extend the size limit of biological macro molecules amenable to study by liquid state

NMR [4-7]. These techniques take advantage of the phenomenon of cross-correlation or interference

between two different relaxation mechanisms [8-13] Until recently, it was not clear if further im-

provements can be made and what is the physical limit for the coherence transfer efficiency between

coupled spins in the presence of cross-correlated relaxation. In our recent work, using methods

from optimal control theory, we derived fundamental limits on the efficiency of polarization transfer

in the presence of general relaxation mechanisms [14-16]. This established that state of the art

experiments in NMR have the potential for significant improvement. We also provided relaxation-

optimized pulse sequences which achieve the theoretical maximum transfer efficiency for a single

spin pair. However, in order to apply these methods to practical NMR experiments, one needs to

simultaneously address a family of coupled spin pairs with dispersion in their Larmor frequencies.

In the limiting cases where cross-correlation rates are either much smaller or much larger than the

spin-spin coupling, modifying the narrow-band relaxation optimized pulses into broadband transfer

schemes is straight-forward by use of conventional refocusing techniques. However, in experiments,

where both coupling and cross-correlation rates are comparable, the use of conventional refocusing

methods for making relaxation optimized sequences broadband significantly reduces the transfer

efficiencies as these methods eliminate either the spin-spin couplings or the cross-correlation effects.

Finding broadband transfer schemes which can achieve the efficiency of relaxation-optimized se-

quences required the development of specific trajectory adapted refocusing (STAR) methods, where

refocusing is performed in a moving coordinate system attached to an optimal trajectory. In this

paper, we present these new methods and resulting broadband relaxation-optimized polarization

transfer experiments.
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2 Theory

We consider an isolated heteronuclear spin system consisting of two coupled spins 1/2, denoted I

(e.g. 1H) and S (e.g. 15N). We address the problem of selective population inversion of two energy

levels (e.g. αβ and ββ) as shown in Fig. 1. This is a central step in high-resolution multi-dimensional

NMR spectroscopy [17] and corresponds to the transfer of an initial density operator Iz, representing

polarization on spin I, to the target state 2IzSz, representing two-spin order.

Figure 1: The broadband transfer of polarization Iz (A) to 2IzSz (B) corresponds to an offset-
independent, but transition-selective population inversion of the energy levels αβ and ββ

For large molecules in the so-called spin diffusion limit [17], where longitudinal relaxation rates are

negligible compared to transverse relaxation rates, both the initial term (Iz) and final term (2IzSz)

of the density operator are long-lived. However, the transfer between these two states requires the

creation of coherences which in general are subject to transverse relaxation. The two principal

transverse relaxation mechanisms are dipole-dipole (DD) relaxation and relaxation due to chemical

shift anisotropy (CSA) of spins I and S. The quantum mechanical equation of motion (Liouville-von

Neumann equation) for the density operator ρ [17] is given by

ρ̇ = π J [−i2IzSz , ρ] + π kDD[2IzSz, [2IzSz, ρ]] + π kI
CSA[Iz, [Iz , ρ]] + π kS

CSA[Sz , [Sz, ρ]]

+ π kI
DD/CSA[2IzSz , [Iz, ρ]] + π kS

DD/CSA[2IzSz, [Sz, ρ]], (1)

where J is the heteronuclear coupling constant. The rates kDD, kI
CSA, kS

CSA represent auto-

relaxation rates due to DD relaxation, CSA relaxation of spin I and CSA relaxation of spin S,

respectively. The rates kI
DD/CSA and kS

DD/CSA represent cross-correlation rates of spin I and S

caused by interference effects between DD and CSA relaxation. These relaxation rates depend on
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various physical parameters, such as the gyromagnetic ratios of the spins, the internuclear distance,

the CSA tensors, the strength of the magnetic field and the correlation time of the molecular tum-

bling [17]. Let the initial density operator ρ(0) = A and ρ(t) denote the density operator at time

t. The maximum efficiency of transfer between A and a target operator C is defined as the largest

possible value of Trace{C†ρ(t)} for any time t [20] (by convention operators A and C are normalized).

Figure 2: (A) Schematic representation of the magnetization vector r1 = (〈Ix〉, 〈Iy〉, 〈Iz〉) and of
the antiphase vector r2 = (〈2IxSz〉, 〈2IySz〉, 〈2IzSz〉) in the common frame spanned by the standard
Cartesian unit vectors i, j, and k. The vectors l1 and l2 are the projections of r1 and r2 into the
transverse plane and γ is the angle between l1 and l2. (B) For the optimal CROP (cross-correlated
relaxation optimized pulse) trajectory [14], the units vectors e1, e2 in the direction of r1 and r2

are orthogonal and together with e3 = e1 × e2 define a specific moving frame along the optimal
trajectory. (C) The pulse element R1(t) consists of a π rotation of spin I around e1, which leaves
r1 invariant and inverts r2 (dashed arrow) and a π rotation of spin S around an arbitrary axis in
the transverse plane, which also leaves r1 invariant and brings r2 back to its initial position (solid
arrow). Hence, R1 neither changes the ratio |l2|/|l1| nor the angle γ which are both constants of
motion for the optimal CROP trajectory.

In our recent work [14] we showed that for a single spin pair IS, the maximum efficiency η of

transfer between the operators Iz and 2IzSz depends only on the scalar coupling constant J and the

net auto-correlated and cross-correlated relaxation rates of spin I, given by ka = kDD + kI
CSA and

kc = kI
DD/CSA, respectively. Here the rates ka and kc are a factor of π smaller than in conventional
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definitions of the rates, e.g., ka = 1/(πT2), where T2 is the transverse relaxation time in the absence

of cross-correlation effects [14, 15]. The physical limit η of the transfer efficiency is given by [14]

η =
√

1 + ζ2 − ζ, (2)

where ζ2 = (k2
a − k2

c )/(J2 + k2
c ). The optimal transfer scheme (CROP: cross-correlated relaxation

optimized pulse) has two constants of motion (see Figure 2 A). If l1(t) and l2(t) denote the two-

dimensional vectors (〈Ix〉(t), 〈Iy〉(t)) and (〈2IxSz〉(t), 〈2IySz〉(t)), respectively, then throughout the

optimal transfer process the ratio |l2|/|l1| of the magnitudes of the vectors l2 and l1 should be

maintained constant at η. Furthermore, the angle γ between l1 and l2 is constant throughout.

These two constants of motion depend on the transverse relaxation rates and the coupling constants

and can be explicitly computed [14]. These constants determine the amplitude and phase of the rf

field at each point in time and explicit expressions for the optimal pulse sequence can be derived.

In Fig. 3 A and B, the optimal rf amplitude and phase of a CROP sequence is shown as a function

of time for the case kc/ka = 0.75 and ka = J .

Figure 3: Ideal (A, B) and approximate (C, D) implementations of an on-resonance CROP sequence
[14] for ka = J and kc/ka = 0.75. Panel A shows the ideal rf amplitude A(t) = −γIB

I
1(t)/(2π) (where

γI is the gyromagnetic ratio of spins I) in units of the coupling constant J and panel C shows a
schematic representation of an approximate CROP sequence consisting of 8 hard pulses of flip angle
α = 21.5◦. Panels B and D show the phases ϕ(t) of the ideal CROP sequence and its hard pulse
approximation.
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The transfer scheme as described assumes that the resonance frequencies of a single spin pair are

known exactly. Therefore, the above methods cannot be directly used in spectroscopic applications

with many spin pairs and a dispersion of Larmor frequencies. In this paper, we develop methods to

make the above principle of relaxation optimized transfer applicable for a broad frequency range,

making these methods suitable for spectroscopy of large proteins. A straightforward method of

converting the smooth pulse shapes (like Fig. 3A) into a broadband transfer scheme can be realized

by the following steps.

a) Given the optimal amplitude A(t) and phase ϕ(t), of the on-resonance pulse (see Fig. 3 A and 3

B), we can approximate the smooth pulse shape as a sequence of hard pulses with small flip angles

αk separated by evolution periods of duration ∆k (c.f. Figs. 3 C). These are DANTE-type sequences

(delays alternating with nutations for tailored excitation) [21]. The flip angle αk at time t is just
∫ t+∆k

t A(τ)dτ, with the phase given by ϕk = ϕ(t) (c.f. Fig. 3 D). The delays ∆k could be chosen

in many ways. For example, they may be all equal or can be chosen so that the flip angles αk are

equal (c.f. Figs. 3 C).

b) Insertion of π pulses in the center of delays to refocus the transverse components of the spins

[22], see Fig. 4 A-C.

Note that this method of making relaxation optimized pulses broadband is only applicable if

one is using either just the couplings (as in INEPT [18] or ROPE [15] transfer) or just the cross-

correlation effects (as in standard CRIPT [19] or CROP [14] transfer for J = 0) as the transfer

mechanism.

For example, the relaxation-optimized pulse elements (ROPE) [15], which only use transfer

through couplings (special case of CROP [14] when kc = 0) can be made broadband in a straight-

forward way as explained above. Simultaneous π rotations applied to spins I and S in the middle

of the evolution periods refocus the chemical shift evolution while retaining the coupling terms (see

Fig. 4 B). Note however, that such a pair of π rotations will eliminate any DD-CSA cross-correlation

effects that might be present [7].

On the other hand, if J is very small or kc is close to ka (in which case transfer using cross-

correlation effects is very efficient, c.f. Eq. 2), it is desirable to use relaxation-optimized sequences
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Figure 4: (A) Architecture of broadband relaxation-optimized pulse sequences, consisting of N
periods of duration ∆k (gray boxes, shown in panes B-D in more detail) and hard rf pulses with
flip angles αk and phases ϕk. (B) Chemical shift refocusing scheme preserving transfer through J
coupling but eliminating transfer though the cross-correlated relaxation rate kc. (C) Chemical shift
refocusing scheme preserving transfer through kc but eliminating transfer though J . (D) STAR echo
scheme preserving both transfer through kc and though J . In B, C, and D, black bars represent
180◦ rotations around an axis in the x-y plane, white bars represent 180◦ rotations around tilted
axes.

which only use cross-correlation effects for transfer (special case of CROP [14] when J = 0). Such

a relaxation optimized transfer is characterized by a smooth rotation Iz → Ix and vice versa

(−2IxSz → 2IzSz). Again such a transfer can be made broadband as explained above. In this

case the refocusing π pulses are applied only to spin I in the center of delays (see Fig. 4 C). By

such pulses, cross-correlation effects are retained but coupling evolution is eliminated [7].

Therefore the advantage of the CROP pulse sequence (which simultaneously uses both J cou-

plings and cross-correlation effects) would be lost in using this conventional strategy to make these

sequences broadband. The key observation for making CROP transfer broadband is that in the

on-resonance CROP transfer scheme, the magnetization vector

r1(t) = 〈Ix〉(t) i + 〈Iy〉(t) j + 〈Iz〉(t) k

always remains perpendicular (c.f. Fig. 2 A and B) to the net antiphase vector

r2(t) = 〈2IxSz〉(t) i + 〈2IySz〉(t) j + 〈2IzSz〉(t) k,

where i, j, and k are the standard Cartesian unit vectors (for details see Supporting Methods). Let

e1, e2 denote unit vectors in the direction of r1 and r2 and let e3 = e1 × e2 denote the unit normal
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pointing out of the plane spanned by e1 and e2.

Let R1(t) denote a π rotation of spin I around e1(t) and a simultaneous π rotation of spin S

around an arbitrary axis in the transverse plane. Observe that R1(t) fixes the vectors r1(t) and

r2(t), see Fig. 2 C. Similarly, let R2(t) denote a π rotation around e2(t) and a simultaneous π

rotation of spin S around an arbitrary axis in the transverse plane. R2(t) inverts r1(t) and r2(t), i.e.

r1(t) → −r1(t) and r2(t) → −r2(t). We also define R3(t) as a π rotation around e3(t) which also

results in r1(t) → −r1(t) and r2(t) → −r2(t). Note that these rotations are special because they

neither change the ratio |l2|/|l1| nor the angle γ between the transverse components l1 and l2.

We now show how the rotations R1 and R3 can be used to produce a broadband cross-correlated

relaxation optimized pulse (BB-CROP) sequence. Given the implementation of the on resonance

CROP pulse (Fig. 3 A and 3 B) as a sequence of pulses and delays (Fig. 3 C and 3 D), the chemical

shift evolution during a delay ∆ can be refocused by the sequence (c.f. Fig. 4 D)

∆

4
R3

∆

4
R1

∆

4
R3

∆

4
.

The rotations R1(t) and R3(t) are defined using the optimal trajectory and keep changing from one

delay to another, as the vectors r1(t) and r2(t) evolve. We refer to this specific trajectory adapted

refocusing as STAR. To analyze how this refocusing works, at time instant t consider the coordinate

system defined by e1(t), e2(t) and e3(t) (c.f. Fig. 2 B). The unit vector along z can be written as

ae1(t) + be2(t) + ce3(t). The chemical shift evolution generator Iz can be expressed as

Iz = aIe1
+ bIe2

+ cIe3
(3)

and the evolution for time ∆
4 under the chemical shift takes the form exp{−i ω(aIe1

+bIe2
+cIe3

)∆
4 }.

Assuming that the R3 rotation is fast, so that there is negligible chemical shift evolution (and

negligible relaxation) during the R3, the sequence ∆
4 R3

∆
4 produces the net evolution

exp{−i ω(aIe1
+ bIe2

+ cIe3
)
∆

4
} R3 exp{−i ω(aIe1

+ bIe2
+ cIe3

)
∆

4
}

= R3 exp{−i ω(−aIe1
− bIe2

+ cIe3
)
∆

4
} exp{−i ω(aIe1

+ bIe2
+ cIe3

)
∆

4
}.

For delays ∆ ≪ 1/ω, the effective evolution can be approximated by R3 exp{−i ω c Ie3

∆
2 }. Now the

rotation R1 can be used to refocus the remaining chemical shift evolution due to Ie3
by the complete

STAR echo sequence ∆
4 R3

∆
4 R1

∆
4 R3

∆
4 . The effective evolution during the period ∆

R1 exp{i ωcIe3

∆

2
} exp{−i ωcIe3

∆

2
} ≈ R1,
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i.e. chemical shift evolution is eliminated. Note, we assume that the frame e1, e2, e3 does not evolve

much during the four ∆
4 periods so that the two R3 rotations are approximately the same. Under

this STAR sequence, the general coupling evolution exp{−i2πJIzSz} and the general Liouvillian

evolution (containing cross correlation effects) is not completely preserved. Inspite of this, the

evolution of r1(t) and r2(t) for the CROP trajectory is unaltered. This is because, for this specific

trajectory, the magnitude of the transverse components l1(t) and l2(t) and the angle γ between

them is not changed by application of these tailored refocusing pulses. Since all evolution is confined

to transverse operators, the efficiency of the BB-CROP pulse is unaltered by application of STAR

refocusing pulses.

3 Practical considerations

180◦ rotations around tilted axes as required by the operations (R1 and R3) of the STAR echo

method can be realized in practice by off-resonance pulses. For example, a 180◦ rotation around an

axis forming an angle θ with the x axis can be implemented by a pulse with an rf amplitude ν1 and

offset νoff = ν1 tan θ with a pulse duration τp = 1/(2νeff), where ν2
eff = ν2

1 + ν2
off . At the start of the

pulse, we assume that both the on-resonance and off-resonance rotating frames are aligned. In the

off-resonance rotating frame the axis of rotation does not move. After the pulse, the off-resonant

rotating frame has acquired an angle of φoff = 2πνoffτ relative to the on-resonance frame. For a

pulse sequence specified in the on-resonance rotating frame, this can be taken into account by adding

the phase φoff acquired during a given off-resonant 180◦ pulse to the nominal phases of all following

pulses on the same rf channel (In the sequence provided in supporting methods, this correction

has been incorporated). Alternative implementations of rotations around tilted axes by composite

on-resonance pulses would be longer and could result in larger relaxation losses during the pulses.

Under the assumption of ideal impulsive 180◦ rotations (with negligible pulse duration and negligible

rf inhomogeneity), the STAR approach realizes a broadband transfer of polarization that achieves the

optimal efficiency as given in [14]. However, spectrometers are limited in terms of their maximum rf

amplitude and homogeneity of the rf field. Therefore in practice, pulses have finite widths and hence

evolution (especially relaxation) becomes important during the pulse duration. The effect becomes

pronounced as the number of 180◦ pulses is increased in order to keep the refocusing periods ∆k

short for a better approximation to the on-resonance CROP pulse. We observe that after a point

the loss caused due to relaxation during pulse periods overshadows the gain in efficiency one would
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expect by finer and finer approximations of the ideal CROP trajectory. Furthermore, dephasing due

to rf inhomogeneity increases as the number of 180◦ pulses is increased. Therefore one is forced to

find a compromise between loss due to a large number of 180◦ pulses versus: (a) loss of efficiency

due to a coarser discretization of the CROP pulse, (b) reduced bandwidth of frequencies that can be

refocused by an increased duration of the refocusing periods. When the number of refocusing periods

becomes small, it is important to find a good way to discretize the CROP pulse so as to maximize the

efficiency of coherence transfer that can be achieved by a pulse sequence with a prescribed number of

evolution periods. We have developed rigorous control theoretic methods based on the principle of

dynamic programming [26] to efficiently achieve this discretization (see Supporting Methods). This

helps us to compute optimal approximations of CROP pulse sequences as a series of a small number

of pulses and delays very efficiently.

Figure 5: The buildup of antiphase vectors r2 is shown for 11 different offset frequencies in the range
of ±5J during (A) a selective CROP (without STAR echoes) and (B) a corresponding BB-CROP
(with STAR echoes) sequence consisting of 12 periods ∆k. The sequence was optimized for ka = J
and kc/ka = 0.75 and a maximum rf amplitude of 67 J .

Fig. 5 A shows the buildup of antiphase vectors r2 for 11 different offset frequencies in the

range of ±5J (corresponding to ±1 kHz for J ≈ 200 Hz) during a CROP sequence consisting of 12

periods ∆k without STAR echoes. As expected, the optimal transfer efficiency is only achieved for

spins close to resonance. In contrast, a corresponding BB-CROP experiment with STAR refocusing

produces efficient polarization transfer for a large range of offsets (c.f. Fig. 5B). Figure 6 shows how

the BB-CROP sequence ”locks” the angle γ between l2 and l1 (c.f. Fig. 2) near its optimal value as

given by on-resonance CROP pulse.

We have carried out extensive simulations to study the loss in efficiency due to a large number

of 180◦ pulses for realistic as well as hypothetical values of rf amplitudes. Fig. 7 illustrates how
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the offset dependence of the transfer efficiency η is effected by increasing the number of STAR echo

periods both in the absence and presence of rf inhomogeneity. From the figures it is clear that one

has to find an optimal number of evolution periods that gives the best performance for given system

parameters like maximum rf amplitude, rf inhomogeneity and the bandwidth one desires to cover.

Figure 6: Evolution of the angle γ during the selective CROP (A) and BB-CROP (B) sequence as
in Fig. 5 for the on-resonance case (red curves) and for an offset of -3 J . The optimal value of γ to
be maintained during the CROP trajectory is indicated by dashed lines.

It is important to note that with high-resolution spectrometers, equipped with more rf power,

relaxation losses during pulse periods can be made very small. This is illustrated in Figs. 7 A and B,

assuming a maximum rf amplitude on the I channel of 500 J and 67J , respectively, corresponding

to 180◦ pulse durations of 5 µs and 39 µs (typical value for 13C pulses) for the J ≈ 194 Hz coupling

constant of the 13C-1H spin pair of a model system [14, 15], (vide infra). For short 180◦ pulses (large

rf amplitude) during which relaxation losses become small, a larger number of refocusing pulses has

the largest bandwidth and approaches the ideal CROP efficiency most closely (c.f. green curve in

Fig. 7 A).

The refocusing sequence ∆
4 R3

∆
4 R1

∆
4 R3

∆
4 as described in the theory section is not the only

STAR refocusing scheme for making CROP sequences broadband. For example, ∆
4 R3

∆
4 R2

∆
4 R3

∆
4

or ∆
4 R2

∆
4 R1

∆
4 R2

∆
4 will also perform STAR refocusing. However as indicated above, in practice it

may be necessary to have ∆ as large as possible, in which case one should try to refocus the largest

of the components a, b, c of the chemical shift generator Iz (c.f. Eq. 3) more often during the

refocusing cycle ∆. For example, the choice of the refocusing cycle presented in the paper is optimal

for the values of kc/ka = 0.75 and ka/J = 1, in which case the vector e3 is mostly in the x-y plane

and hence the magnitude of component c is smaller than the magnitude of a or b. Therefore it is

of advantage to refocus a and b more often by performing R3 rotations (the R3 rotation refocuses
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the a and b components) and hence the choice of the sequence. Since there are no rotations of spin

S during the application of R3 pulses, the total number of pulses and the resulting effects due to

rf inhomogeneity are minimized. Dephasing losses due to rf inhomogeneity of the 180◦ pulses (e.g.

applied to spin S) can be further reduced by choosing appropriate phase cycling schemes [23, 24, 25].

Figure 7: Offset dependence of the transfer efficiency η for system parameters corresponding to the
13C-1H moiety of 13C sodium formate in glycerol with ka = J and kc/ka = 0.75 [14] (A, B) and
corresponding to the 1H-15N moiety of a protein with a a rotational correlation time of 70 ns with
ka = 0.8 J and kc/ka = 0.73 [7] (A and B). A maximum rf amplitude on the I channel of 500 J (A),
67 J (B), and 550 J (C) is assumed, corresponding to a hypothetical 180◦ (13C) pulse duration of 5
µs (A), realistic on-resonance 180◦ (13C) pulse duration of 39 µs (B) and a 180◦(1H) pulse duration
of 10 µs (C) for a 1H-15N coupling of J = 93 Hz. Blue, red and green curves represent BB-CROP
sequences with 4, 8 and 12 STAR echo periods ∆k, respectively (for details, see Supporting Methods).
Solid and dashed curves correspond to simulations in the absence and presence of rf inhomogeneity,
respectively, assuming a Gaussian rf distribution with a full width at half height of 10%.

In many cases it might also be possible to cut down relaxation losses by suitable implementation of

the 180◦ pulses. For example, in the presence of a large contribution of the dipole-dipole mechanism
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to the transverse relaxation rates, synchronization of I and S rotations can be used to create trans-

verse bilinear operators such as IxSx which commute with IzSz. This way some of the losses might

be prevented when the antiphase magnetization is passed through the transverse plane during its

inversion by R3 pulses.

4 Experimental results

In order to test the BB-CROP pulse sequence, we chose an established model system [14, 15],

consisting of a small molecule (13C-labeled sodium formate) dissolved in a highly viscous solvent

((2H8) glycerol) in order to simulate the rotational correlation time of a large protein. Both the

simplicity and sensitivity of the model system makes it possible to quantitatively compare the

transfer efficiency of pulse sequences and to acquire detailed offset profiles in a reasonable time.

Because of its large chemical shift anisotropy and the resulting CSA-DD cross-correlation effects, we

use the 13C spin of 13C-sodium formate to represent spin I and the attached 1H spin to represent

spin S with a heteronuclear scalar coupling constant of J = 193.6 Hz. At a temperature of 270.6 K

and a magnetic field of 17.6 T, the experimentally determined auto and cross-correlated relaxation

rates of spin I were ka ≈ J and kc ≈ 0.75 ka (solvent: 100% (2H8) glycerol). For a given pulse

sequence element, the achieved transfer efficiency of 13C polarization Iz to 2IzSz was measured by

applying a hard 90◦y proton pulse and recording the resulting proton anti-phase signal (initial 1H

magnetization was dephased by applying a 90◦ proton pulse followed by a pulsed magnetic field

gradient) [15].

Fig. 8 shows experimental on-resonance transfer efficiencies of the conventional INEPT [18] and

CRIPT [19] sequences as a function of the mixing time. The figure also shows the on-resonance

transfer efficiency of a CROP sequence consisting of four periods ∆k (without refocusing) which

shows a gain of 65% compared to the maximum INEPT efficiency. As expected (c.f. blue curve

in Fig. 7 B), the broadband version of this sequence (BB-CROP) with four STAR echoes has a

reduced transfer efficiency because of relaxation losses during the additional 180◦ pulses, which in

the current experiments had relatively long durations due to the relatively small rf amplitude (13
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Figure 8: Experimental on-resonance transfer efficiencies of the CROP (open square) and corre-
sponding BB-CROP (filled square) sequence consisting of four periods ∆k (without and with STAR
echoes) and a total duration of 4.2 ms. For comparison, experimental on-resonance INEPT and
CRIPT transfer efficiencies are shown as a function of the transfer time. In the experiments, spins
I and S correspond to 13C and 1H in 13C-sodium formate dissolved in (2H8) glycerol.

kHz) of the I channel (13C) (the BB-CROP pulse sequence is provided in Supporting Methods).

Additional losses are caused by dephasing due to rf inhomogeneity, which is typically larger for the

13C channel (where most 180◦ pulses are given) compared to the 1H channel. The experimentally

determined on-resonance transfer efficiency of BB-CROP is 28 % larger than the maximum INEPT

transfer efficiency. In Fig. 9, the experimental offset profiles of the Iz → 2IzSz transfer efficiency of

BB-CROP and INEPT are compared. A reasonable match is found between the experiments and

the simulations shown in Fig. 7 B.

Figure 9: Experimental offset dependence of the Iz → 2IzSz transfer efficiency for a BB-CROP
sequence consisting of 4 periods with STAR echoes (red) and the INEPT sequence (black). The
resulting two-spin order 2IzSz was converted to antiphase coherence 2IzSx by a hard 90◦(S) pulse
and the resulting antiphase signals are shown for 11 offsets of spin I in the range of ± 500 Hz.
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5 Conclusion

In this paper we introduced the principle of specific trajectory adapted refocusing (STAR), which

was used to design broadband relaxation optimized BB-CROP pulse sequence. We would like to em-

phasize again that with increasing rf amplitudes, the efficiency of the on-resonance cross-correlated

relaxation optimized pulse can be closely approached by the BB-CROP sequences. As future spec-

trometers are equipped with more rf power, we can significantly reduce the duration of 180◦ re-

focusing pulses, which are the major bottleneck in BB-CROP achieving the maximum efficiency.

Based on our simulations, we expect immediate gains in NMR spectroscopy of large proteins by use

of the proposed BB-CROP pulses. For example, in the HSQC experiment involving 1H and 15N,

with maximum rf amplitudes corresponding to 12 µs 1H 180◦ pulses and 40 µs 15N 180◦ pulses,

we expect up to 70% enhancement in sensitivity over a reasonable bandwidth compared to state

of the art methods. With currently available rf amplitudes, in many applications it might even be

advantageous to use broadband versions of ROPE or optimal CRIPT (special case of CROP where

J = 0). In these cases, we only use 180◦ pulses in the center of each evolution period and hence loose

less due to relaxation during the pulses (of course, as pointed out earlier, in these cases in order to

do a broadband transfer, we will necessarily eliminate either J couplings or cross-correlation ). In

Figs. 8 and 9 we have not compared the sensitivity of BB-CROP with CRINEPT [7] as the latter is

not broadband for the transfer Iz → 2IzSz. Similar to the on-resonance CROP pulse, we have found

that the BB-CROP pulse sequence is robust to variations in relaxation rates. Finally, the ability of

the BB-CROP sequence to achieve the maximum possible transfer efficiency over a broad frequency

range by use of high rf power provides a strong motivation to build high-resolution spectrometers

with short 180◦ pulses.
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6 Supporting Methods

6.1 Orthogonality of inphase and antiphase magnetization along CROP

trajectories

Let r1(t), r2(t) represent the inphase and antiphase magnetization vectors as defined in the paper.

Let l1 and l2 represent their transverse components as shown in Fig. 1 of the main text. For the

sake of simplicity of notation, we will also use l1 and l2 to denote the magnitudes of these transverse

vectors, as the true meaning will be clear from the context. In [14], it was shown that the CROP

transfer Iz → 2IzSz has the following properties. Throughout the transfer, the angle γ between

vectors l1 and l2 is constant and the ratio l2
l1

is constant at the value η, where η is the optimal

efficiency of the CROP pulse. The two constants of motion completely determine the amplitude A

and the phase φ, the CROP pulse makes with the vector l1. Furthermore γ and η satisfy [14]

1

η
cos(θ − γ) + η cos(θ + γ) =

2ξ

χ
, (4)

where ξ = ka

J , χ =
√

1 +
k2

c

J2 and θ = tan−1( J
−kc

).

Using z1(t) = 〈Iz〉(t) and z2(t) = 〈2IzSz〉(t), the inner product J between r1(t) and r2(t) can be

expressed as

J = z1(t)z2(t) + l1(t)l2(t) cos(γ).

We now compute dJ
dt along the CROP trajectory using the following identities, where the time

dependence of the quantities, l1, l2, z1, z2, A, φ is implicit.

dz1

dt
= −2πAl1 sin φ

dz2

dt
= 2πA l2 sin(γ − φ)

dl1
dt

= 2πA z1 sin φ − πJ(ξ l1 − χ l2 cos(θ + γ))

dl2
dt

= −2πA sin(γ − φ) z2 − πJ(ξ l2 − χ l1 cos(θ − γ))

dJ

dt
= l1l2{A sin γ(

z1

l1
cosφ −

z2

l2
cos(γ − φ)) + Jχ (

l1
l2

cos(θ − γ) +
l2
l1

cos(θ + γ) − 2
ξ

χ
)}.
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Along the CROP trajectory, dγ
dt = 0 implies [14]

A sin γ (
z1

l1
cosφ −

z2

l2
cos(γ − φ)) = 0.

Also along the CROP trajectory l2
l1

= η. Using (Eq. 4), we then obtain that along CROP trajectory

l1
l2

cos(θ − γ) +
l2
l1

cos(θ + γ) =
2ξ

χ
.

This then implies dJ(t)
dt = 0. Since J(0) = 0 as r2(0) = 0, we obtain that throughout the transfer

J(t) = 0.

6.2 Dynamic Programming method for finding optimal sequence of flips

and delays

We now explain the method of dynamic programming [26] for finding the optimal sequence of

pulses and delays that best approximates relaxation optimized pulse sequences. The method is

best illustrated by considering the simpler case when there is no cross-correlation in the system.

In absence of cross-correlation, the relaxation optimized transfer of Iz → 2IzSz is characterized by

gradual rotation of the operator Iz → Ix, followed by the rotation 2IySz → 2IzSz [15]. Let r1

be the magnitude of in-phase terms, i.e., r2
1 = 〈Ix〉

2 + 〈Iz〉
2. Let β1 be the angle r1 makes with

the transverse plane, i.e. β1 = cos−1 〈Ix〉
r1

(see Fig. 1). Let r2 measure the magnitude of the total

antiphase terms, i.e., r2
2 = 〈2IySz〉

2 + 〈2IzSz〉
2 and let β2 = cos−1 〈2IySz〉

r2

(see Fig. 1). Using rf

fields, we can exactly control the angle β1 and β2 and these are thought of as control parameters

(see Fig. 1). During the evolution of relaxation optimized pulse sequence [15] one of the β1 or β2 is

zero, so we assume (β1, β2) ∈ ([0, π
2 ], 0) ∪ (0, [0, π

2 ]).

Figure 10: Representation of the system variables r1, r2, the angles β1, β2, and of the control
parameters u1 = cosβ1, u2 = cosβ2 in terms of the expectation values 〈Ix〉, 〈Iz〉, 〈2IySz〉, and
〈2IzSz〉.
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Now suppose, we only have one evolution period, consisting of a pulse and delay, at our disposal.

We can compute this optimal pulse and delay so that at the end of the evolution period, r2 is

maximized. Starting with r1, r2 as defined and a given choice of β1, β2 and τ , the values of r1(τ)

and r2(τ) at the end of the period τ are

r2
1(τ) = exp(−2πkaτ)(r1 cosβ1 cos(πJτ) − r2 cosβ2 sin(πJτ))2 + (r1 sinβ1)

2 (5)

r2
2(τ) = exp(−2πkaτ)(r2 cosβ2 cos(πJτ) + r1 cosβ1 sin(πJτ))2 + (r2 sinβ2)

2. (6)

We write this as (r1(τ), r2(τ)) = f(r1, r2; β1, β2, τ). We can maximize the expression in equation

(6) and find the optimal value of τ, β1, β2 and also the largest achievable value r2(τ). This value

depends only on the initial value r1 and r2 and we call it V1(r1, r2), the optimal return function at

stage 1 starting from r1, r2. This optimal return function represents the best we can do starting

from a given value of r1 and r2 given only one evolution period.

Given two evolution periods, then by definition V2(r1, r2) = maxβ1,β2,τ V1(f(r1, r2; β1, β2, τ)).

The basic idea is, since we have computed V1 for various values of r1 and r2 , we can use it to

compute V2. In general then

Vn(r1, r2) = max
β1,β2,τ

Vn−1(f(r1, r2; β1, β2, τ)). (7)

Thus the dynamic programming proceeds backwards. We first compute the optimal return functions

V1 followed by V2 and so on. Computing Vk(r1, r2), also involves computing the best value of the

control parameters β1, β2, τ to choose for a given value of state r1, r2 at stage k. We denote this

optimal choice as β∗
1 (r1, r2, k), β∗

2 (r1, r2, k), τ∗(r1, r2, k), indicating that the optimal control depends

on the state r1, r2 and the stage k.

In practice, the algorithm is implemented by sampling the [0, 1] × [0, 1] square in the r1, r2 plane

uniformly into say 100 points. Each of these points correspond to a different value of r1, r2. By

maximizing the expression in equation 6, we can compute the optimal β1, β2, τ for each of these

points. This would give us β∗
1 (r1, r2, 1), β∗

2(r1, r2, 1), τ∗(r1, r2, 1) and also V1(r1, r2). Now to find

V2(r1, r2) at these points, we sample the control space (β1, β2) ∈ ([0, π
2 ], 0)∪(0, [0, π

2 ]) and τ ∈ [0, 1
2J ]

uniformly and compute the value f(r1, r2, β1, β2, τ) for all of these samples β1, β2, τ and choose the

one that has the largest value V1(f(r1, r2; β1, β2, τ)) .This then is the best choice of control parameters

if there are two evolution periods to go. We also then obtain V2(r1, r2) = V1(f(r1, r2, β
∗
1 , β∗

2 , τ∗)).
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We can continue this way and compute Vn(r1, r2). Now to construct the optimal pulse sequence

consisting of N evolution periods, we just look at the value β∗
1 (1, 0, N), β∗

2(1, 0, N), τ∗(1, 0, N) and

evolve the system according to these parameters and get r1 and r2 at beginning of stage N − 1.

But we also know β∗
1 (r1, r2, N − 1), β∗

2 (r1, r2, N − 1), τ∗(r1, r2, N − 1) which is then used to evolve

the system for one more step and so on. From the sequence β∗
1 (r1, r2, k), β∗

2(r1, r2, k), τ∗(r1, r2, k),

k = 1...N , the optimal flip angles can be immediately determined.
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6.3 BB-CROP Pulse sequence parameters

Table 1: Parameters of a BB-CROP sequence (c.f. Fig. 4 A and D) consisting of four STAR

echoes optimized for ka/J = 1, kc/ka = 0.75 and amplitude A = 67 J ≈ 13 kHz of the I channel

for J = 193.6 Hz. The DANTE-type on-resonance pulses applied to spin I are denoted αk. The

Table only specifies explicitly the parameters for the spin I rf channel, however note that the pulse

elements R1(t) require a simultaneous hard 180◦ rotation of spin S around an axis in the transverse

plane. In our experiments, the phases of the four 180◦(S) pulses were chosen according to the XY-4

cycle 0◦, 90◦, 0◦, 90◦ [24] in order to reduce the effects of rf inhomogeneity of the S pulses.

type duration [µs] offset [kHz] Phase [deg]
α0 5.9 - 0

∆1/4 300.2 - -
R3(t) 36.1 −4.77 119.5
∆1/4 300.2 - -
R1(t) 12.7 37.13 20.9
∆1/4 300.2 - -
R3(t) 37.6 −2.76 224.6
∆1/4 300.2 - -
α1 7.9 - 393.9

∆2/4 220.2 - -
R3(t) 34.1 -6.82 182.5
∆2/4 220.2 - -
R1(t) 25.1 15.13 36.3
∆2/4 220.2 - -
R3(t) 35.5 -5.39 223.5
∆2/4 220.2 - -
α2 8.6 - 340.5

∆3/4 219.7 - -
R3(t) 34.5 -6.42 157.3
∆3/4 219.7 - -
R1(t) 35.2 5.74 353.8
∆3/4 219.7 - -
R3(t) 34.4 -6.48 136.6
∆3/4 219.7 - -
α3 7.9 - 217.3

∆4/4 301.2 - -
R3(t) 36.7 -4.04 58.3
∆4/4 301.2 - -
R1(t) 38.3 -1.19 269.0
∆4/4 301.2 - -
R3(t) 36.4 -4.49 344.1
∆4/4 301.2 - -
α4 4.2 - 350.3
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