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Abstract

In this paper, we introduce optimal control -related gradient-based numerical algorithms for the de-

sign of pulse sequences in NMR spectroscopy. This methodology is used for designing pulse sequences

that maximize the coherence tran sfer between coupled spins in a given spe ed time, minimize the

relaxation e ects in a given coherencetransfer step or minimize the time required to produce a given

unitar y propagator, as desired. T he application of these gradient ascent pulse engineering (GRAPE)

methods to design pulse sequences that are robust to experimentally important parameter variations,

such as chemical shift dispersion or rf variations due to imperfections such as rf-inhomogeneity is

also explained.
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1 Introduction

In applications of NMR spectroscopy it is desirable to have optimized pulse sequences tailored to

specific applications. For example, in multi-dimensional NMR experiments one is often interested

in pulse sequences which maximize the coherence transfer between coupled spins in a given specified

time, minimize the relaxation effects in a given coherence transfer step or minimize the time required

to produce a given unitary propagator. From an engineering perspective all these problems are

challenges in optimal control [1, 2] where one is interested in tailoring the excitation to a dynamical

system to maximize some performance criterion. In this paper we present gradient ascent algorithms

for optimizing pulse sequences (control laws) for steering the dynamics of coupled nuclear spins.

Similar methods and their variants have been applied in Laser spectroscopy [3, 4, 5, 7]. In NMR,

this approach has been used to design band-selective pulses [8, 9, 10], robust broadband excitation

and inversion pulses [11, 12, 13]. However, previous studies in NMR were limited to uncoupled spin

systems whose dynamics is governed by the Bloch equations. It is important to note that the optimal

control principles are standard text book material in applied optimal control [1, 2]. The focus of this

paper is the application of these methods for some important problems in NMR. Previously, gradient-

based optimizations of NMR pulse sequences for coupled spin systems have almost exclusively relied

on gradients computed by the difference method. One important exception are analytical derivatives

introduced by Levante et al. [14] for pulse sequence optimizations, where the performance can be

expressed in terms of the eigenvalues and eigenfunctions of the total propagator.

The paper is organized as follows. In section 2, we present the basic theoretical ideas and

numerical optimization algorithms directly applicable to the problem of pulse design. To illustrate

the method, we present three simple but non-trivial applications to coupled spin systems both in the

presence and in the absence of relaxation. In section 3.1, we look at the problem of finding maximum

coherence transfer achievable in a given time and the design of pulse sequences that achieve this

transfer. In section 3.2, the algorithm is used to find relaxation optimized pulse sequences that

perform desired coherence transfer operations with minimum losses. In section 3.3, we design pulse

sequences that produce a desired unitary propagator in a network of coupled spins in minimal time.

In all examples, we compare the results obtained by the numerical optimization algorithm with

optimal solutions obtained by analytical arguments based on geometric optimal control theory. In

the conclusion section, we discuss the convergence properties of the proposed algorithm and possible

extensions.
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2 Theory

2.1 Transfer between hermitian operators in the absence of relaxation

To fix ideas, we first consider the problem of pulse design for polarization or coherenece transfer in

the absence of relaxation. The state of the spin system is characterized by the density operator ρ(t),

and its equation of motion is the Liouville-von Neuman equation [15]

ρ̇(t) = −i [(Ho +
m∑

k=1

uk(t)Hk), ρ(t)], (1)

where Ho is the free evolution Hamiltonian, Hk are the radio-frequency (rf) Hamiltonians corre-

sponding to the available control fields and u(t) = (u1(t), u2(t), . . . , um(t)) represents the vector of

amplitudes that can be changed and which is referred to as control vector. The problem is to find

the optimal amplitudes uk(t) of the rf fields that steer a given initial density operator ρ(0) = ρo in a

specified time T to a density operator ρ(T ) with maximum overlap to some desired target operator

C. For hermitian operators ρo and C, this overlap may be measured by the standard inner product

〈C|ρ(T )〉 = tr{C†ρ(T )}. (2)

(For the more general case of non-hermitian operators, see section 2.2). Hence, the performance

index Φo of the transfer process can be defined as

Φo = 〈C|ρ(T )〉. (3)

In the following, we will assume for simplicity that the chosen transfer time T is discretized in N

equal steps of duration ∆t = T/N and during each step, the control amplitudes uk are constant, i.e.

during the jth step the amplitude uk(t) of the kth control Hamiltonian is given by uk(j) (c.f. Fig.

1). The time-evolution of the spin system during a time step j is given by the propagator

Uj = exp{−i ∆t (Ho +
m∑

k=1

uk(j)Hk)}. (4)

The final density operator at time t = T is

ρ(T ) = UN . . . U1 ρo U†
1 . . . U†

N (5)

and the performance function Φo (Eq. 3) to be maximized can be expressed as

Φo = 〈C|UN . . . U1 ρo U†
1 . . . U†

N 〉. (6)
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Using the definition of the inner product (c.f. Eq. 2) and the fact that the trace of a product is

invariant under cyclic permutations of the factors, this can be rewritten as

Φo = 〈 U†
j+1 . . . U†

N C UN . . . Uj+1︸ ︷︷ ︸
λj

| Uj . . . U1 ρoU
†
1 . . . U†

j︸ ︷︷ ︸
ρj

〉, (7)

where ρj is the density operator ρ(t) at time t = j∆t and λj is the backward propagated target

operator C at the same time t = j∆t. Let us see how the performance Φo changes when we perturb

the control amplitude uk(j) at time step j to uk(j) + δuk(j). From Eq. (4) the change in Uj to first

order in δuk(j) is given by

δUj = −i∆t δuk(j) Hk Uj (8)

with

Hk ∆t =
∫ ∆t

0
Uj(τ) Hk Uj(−τ) dτ (9)

and

Uj(τ) = exp{−i τ(Ho +
m∑

k=1

uk(j)Hk)}. (10)

This follows from the standard formula

d
dx

eA+xB |x=0 = eA

∫ 1

0
eAτBe−Aτdτ. (11)

For small ∆t (when ∆t $ ||Ho +
∑m

k=1 uk(j)Hk||−1), Hk ≈ Hk and using Eqs. (7) and (8) we find

to first order in ∆t
δΦo

δuk(j)
= − 〈 λj | i ∆t [Hk, ρj ]〉. (12)

Observe we increase the performance function Φo if we choose

uk(j) → uk(j) + ε
δΦo

δuk(j)
, (13)

where ε is a small step size. This forms the basis of the following algorithm, which we denote GRAPE

(gradient ascent pulse engineering) in order to distinguish it from conventional gradient approaches

used in NMR based on difference methods.

Basic GRAPE algorithm

1) Guess initial controls uk(j).

2) Starting from ρo, calculate ρj = Uj . . . U1 ρoU
†
1 . . . U†

j for all j ≤ N .

3) Starting from λN = C, calculate λj = U†
j+1 . . . U†

N C UN . . . Uj+1 for all j ≤ N .

4) Evaluate δΦo/δuk(j) and update the m×N control amplitudes uk(j) according to Eq. (13).
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5) With this as the new controls, go to step 2).

The algorithm is terminated if the change in the performance index Φo is smaller than a chosen

threshold value.

In principle, the choice of starting uk(j) can be completely random. However, an educated guess

might lead to faster convergence. Clearly, since the algorithm is based on a gradient ascent procedure,

there is no guarantee that it will converge to a global minimum. However at each step the algorithm

moves in the direction of increasing performance (c.f. Fig. 1), so we can be assured that it converges

to control amplitudes that are extremal points of the desired performance function. To expedite the

process of this convergence, we can adopt standard conjugate gradient methods [2].

The important advantages of the optimal control related approach are best highlighted by comparing

the GRAPE algorithm to conventionally used numerical difference methods to calculate the gradient

δΦo/δuk(j) by computing Φo for the given pulse sequence uk(j) as well as for small variations of all

m×N control amplitudes. For example, for N = 500 and m = 4, the conventional approach would

require to calculate 2001 full time evolutions of the density operator from t = 0 to T . In contrast, the

GRAPE approach to calculate the same gradient δΦo/δuk(j) only requires two full time evolutions

(one to propagate ρo from t = 0 to T and one to back-propagate λN from t = T to 0), i.e. it is

orders of magnitude faster. This makes it possible to efficiently optimizes NMR pulse sequences in

much larger parameter spaces. As conventional approaches were typically limited to a few dozens

of control variables, a typical strategy was to restrict the optimization to certain pulse families,

such as composite pulses with a limited number of flip and phase angles [16, 17], Gaussian pulse

cascades [18], spline functions [19] or Fourier expansions [20]. In contrast, the GRAPE algorithm

allows for much higher flexibility as the number of pulse parameters to be optimized can be orders

of magnitude larger compared to conventional approaches.

2.2 Transfer between non-hermitian states in the absence of relaxation

For non-hermitian operators ρo and C (e.g. ρo = S− = Sx− iSy and C = I− = Ix− iIy, c.f. section

3.1), Φo as defined in Eq. (3) cannot be used directly as a perfomance index for the optimization,

because in general it is not real valued. Depending on the application [21], suitable performance

functions for non-hermitian operators are the real part of Φo or the absolute value of Φo:
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Φ1 = Re(Φo) = Re〈C|ρ(T )〉 (14)

= Re〈(Cx + i Cy)|UN . . . U1 (ρx
o + i ρy

o) U†
1 . . . U†

N 〉 (15)

or

Φ2 = |Φo|2 = |〈C|ρ(T )〉|2 = 〈C|ρ(T )〉〈ρ(T )|C〉, (16)

where Cx and i Cy are the hermitian and skew-hermitian parts of the target operator C and ρx
o and

i ρy
o are the hermitian and skew-hermitian parts of ρo.

For the performance function Φ1 we find the gradient to first order in ∆t

δΦ1

δuk(j)
= − 〈 λx

j | i∆t[Hk, ρx
j ] 〉 − 〈 λy

j | i∆t[Hk, ρy
j ] 〉, (17)

where ρx
j and ρy

j are the hermitian and skew-hermitian parts of ρj = ρx
j + iρy

j and similarly λx
j and

λy
j are the hermitian and skew-hermitian parts of λj = λx

j + iλy
j .

For the performance function Φ2 the gradient to first order in ∆t is given by

δΦ2

δuk(j)
= −〈λj | i∆t[Hk, ρj ]〉〈 ρN |C〉 − 〈 C|ρN 〉〈i∆t[Hk, ρj ]| λj〉

= −2Re{〈λj | i∆t[Hk, ρj ]〉〈 ρN |C〉}. (18)

Using the gradient δΦ1/δuk(j) or δΦ2/δuk(j) instead of δΦo/δuk(j) in step 4, the basic GRAPE

algorithm described in section 2.1 can also be applied to optimize the transfer between non-hermitian

operators.

2.3 Relaxation-optimized coherence transfer

In Liouville space [15], the equation of motion for the density operator in the presence of relaxation

can be written as

ρ̇ = L̂ρ, (19)

where L̂ = −i Ĥ + Γ̂ is the Liouville superoperator, Ĥ is the Hamilton superoperator and Γ̂ is the

relaxation superoperator (including thermal correction [22] if appropriate). For simplicity, here we

consider the transfer between hermitian operators ρo and C, but the results can be easily generalized

to non-hermition operators (c.f. section 2.2). According to Eq. (3), a suitable performance function

is

Φo = 〈C|ρ(T )〉, (20)
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where now the final density operator ρ(T ) is given by

ρ(T ) = L̂N . . . L̂1 ρo (21)

with

L̂j = exp{ L̂ ∆t }. (22)

Hence, the performance function can be expressed as

Φo = 〈C|L̂N . . . L̂1 ρo〉

= 〈 L̂†
j+1 . . . L̂†

N C
︸ ︷︷ ︸

λj

| L̂j . . . L̂1 ρo︸ ︷︷ ︸
ρj

〉 (23)

and as in Eq. (12) to first order in ∆t

δΦo

δuk(j)
= −〈 λj | i∆t Ĥ(ρj) 〉 = −〈 λj | i∆t [Hk, ρj ] 〉 (24)

where in the presence of relaxation, λj and ρj are defined in Eq. (23).

2.4 Synthesis of unitary transformations

Now we consider the problem to create in a given time T a desired unitary propagator. The equation

of motion for the propagator of a closed quantum system is

U̇ = −i(Ho +
m∑

k=1

uk(t)Hk)U. (25)

At t = 0, the initial propagator is U(0) = 1.

First we consider the problem to approach a desired propagator UF by applying a pulse sequence

uj(t) such that at the final time

‖UF − U(T )‖2 = ‖UF ‖2 − 2Re〈UF |U(T )〉+ ‖U(T )‖2 (26)

is minimized, which is equivalent to maximizing Re〈UF |U(T )〉. Hence we can define the performance

function to be optimized by the pulse sequence as

Φ3 = Re〈UF |U(T )〉

= Re〈UF |UN . . . U1〉 (27)

= Re〈 U†
j+1 . . . U†

N UF︸ ︷︷ ︸
Pj

| Uj . . . U1︸ ︷︷ ︸
Xj

〉.
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and the corresponding gradient δΦ3/δuk(j) to first order in ∆t is given by

δΦ3

δuk(j)
= −Re〈 Pj | i∆t Hk Xj 〉. (28)

While the performance index Φ3 may be of theoretical interest, for practical applications, it is

sufficient to approach the target propagator UF only up to an arbitrary phase factor exp{iϕ} and

‖UF − eiϕ U(T )‖2 = ‖UF ‖2 − 2Re〈UF |eiϕU(T )〉+ ‖U(T )‖2 (29)

is to be minimized for choice of ϕ, which is equivalent to maximizing the performance function

Φ4 = |〈UF |U(T )〉|2

= 〈UF |UN . . . U1〉〈U1 . . . UN |UF 〉 (30)

= 〈 Pj |Xj 〉〈Xj |Pj〉

with the operators Xj and Pj as defined in Eq. (27). The corresponding gradient δΦ4/δuk(j) to

first order in ∆t is given by

δΦ4

δuk(j)
= −〈 Pj |Xj 〉〈i∆t HkXj |Pj〉 − 〈 Pj | i∆t Hk Xj 〉〈Xj |Pj〉

= −2Re{〈 Pj | i∆t Hk Xj 〉〈Xj |Pj〉}. (31)

2.5 Reduction of rf power and limited rf amplitudes

In the given formulation of the optimization problem, it is also straight-forward to add to any of the

previously defined performance functions Φi, a penalty

Φrf = α
N∑

j=1

m∑

k=1

{uk(j)}2∆t (32)

for the total rf power applied during the pulse sequence to minimize sample heating, where α is

a weight of the penalty imposed for excessive rf-power. Hence, the gradient simply contains an

additional term
δΦrf

δuk(j)
= −2 α uk(j)∆t . (33)

If the maximum rf amplitude is limited, this can be taken into account in the algorithm described

in section 2.1 by resetting the amplitude to the maximum amplitude if it is exceeded after step 4

(see e.g. [12]).

8



2.6 Robustness

For practical applications, it is often desirable to achieve the optimum performance for a range of

parameters ω, such as a given range of chemical shifts and/or a given range of rf amplitudes to

take into account the effects of rf inhomogeneity or rf miscalibration. If the range of parameters is

sampled at discrete values ωp, the total performance Φtot can be measured by summing over the

performance of systems parameterized by ωp:

Φtot =
∑

p

Φ(ωp). (34)

For example, for the case of hermitian transfer, with Φ(ωp) = Φo(ωp) (c.f. section 2.1)

Φtot =
∑

p

〈C|UN (ωp) . . . U1(ωp) ρo U†
1 (ωp) . . . U†

N (ωp)〉

=
∑

p

〈λj(ωp)|ρj(ωp)〉 (35)

and
δΦtot

δuk(j)
= −

∑

p

〈 λj(ωp) | i∆t [Hk, ρj(ωp)] 〉. (36)

3 Examples

3.1 Time-optimal coherence-order selective in-phase transfer

As a practical example, we consider coherence-order selective in-phase transfer (I− → S−) [23]

in a heteronuclear two-spin system in the absence of relaxation. Here we are interested in the

following question: What is the minimum time to achieve a specified amount of coherence transfer,

or conversely, what is the maximum possible coherence transfer amplitude in any given time T in

the absence of relaxation, i.e. under unitary evolution? This is a simple, but non-trivial example,

which has only recently been solved analytically based on principles of geometric control [24, 25].

Hence, this constitutes an ideal test case for the presented GRAPE algorithm because numerically

optimized transfer amplitudes can be directly compared to the theoretical benchmark provided by

the analytical result. We assume that both spins S and I are on-resonance in the doubly rotating

frame. The free evolution Hamiltonian of the spin system is

Ho = 2πJIzSz, (37)
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where J is the heteronuclear coupling constant. The initial density operator term of interest is

ρo = I− = Ix − iIy and the target operator is C = S− = Sx − iSy. In most practical applications of

coherence-order-selective coherence transfer [21, 23, 26], the goal is to maximize |〈I−|ρ(T )〉|. Hence,

the appropriate performance function is Φ2 (c.f. Eq. (16)). The normalized absolute value of the

transfer amplitude for a given mixing period T is defined as [21]

η(T ) =
|〈S−|ρ(T )〉|
‖I−‖ ‖S−‖ =

1
2
|〈S−|ρ(T )〉|. (38)

In our numerical optimizations based on the GRAPE algorithm, the heteronuclear coupling J

was chosen to be 1 Hz. 30 pulses were optimized with total durations T in the range between 0 and

1.5 s (c.f. Fig. 2), each pulse was digitized in steps ∆t = 0.002 s. For each time step ∆t, the x and

y rf amplitudes irradiated at spins I and S were optimized: u1(j) = νI
x(j), u2 = νI

y (j), u3 = νS
x (j),

u4 = νS
y (j) and H1 = 2πIx, H2 = 2πIy, H3 = 2πSx, H4 = 2πSy (c.f. Eq. 1). For example for

T = 1.5 s, this resulted in a total number of 6000 optimization parameters. For each value of T , the

gradient flow algorithm was started with initial sequences uk(j) which were created by assigning a

random value to every tenth point and using a cubic spline fit to fill in the amplitudes uk(j) of the

intermediate time points. This resulted in random but relatively smooth initial pulse amplitudes.

In these optimizations, the maximum rf amplitude was not limited and we also did not include

a penalty for increased rf power (c.f. section 2.5). In Fig. 2, the numerically optimized transfer

efficiencies η(T ) (circles) are superimposed with the analytical curve (solid line), representing time-

optimal pulses [24, 25]. For all chosen total durations T , the maximum transfer efficiency η(T ) found

by the gradient algorithm converged to the analytically derived optimum values. The minimum time

to reach full transfer (η = 1) ist τ∗ = 3/(2J) [24]. For T < T ∗, the optimal transfer amplitude is up

to 12.5% larger compared to the transfer amplitude of heteronuclear isotropic mixing [27, 28, 29].

For example, Fig. 3 shows an optimized pulse sequence found by the GRAPE algorithm for T = 0.5

s. In order to simplify the comparison of the pulses applied to spins I and S, the arbitrary relative

phase of the pulse sequence applied to spin S was shifted by 200◦. The figure shows that up to

this relative phase shift of the S pulse, the sequences are almost identical, as expected in order

to create the required effective Hamiltonian [24]. Note that there is an infinite number of possible

pulse sequences, which create the optimal average Hamiltonian and hence for each value of T , many

optimal solutions exist and the pulse sequences found by the GRAPE algorithm depend strongly on

the initial random sequence.
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3.2 Relaxation-optimized pulse elements (ROPE)

As a second example, we consider the problem to achieve optimal coherence transfer in the presence

of relaxation. For an isolated two-spin system in the spin-diffusion limit, it has recently been

demonstrated that currently used pulse sequence elements such as INEPT [30] are far from optimal.

For example, if dipolar relaxation between an isolated pair of spins is the dominant relaxation

mechanism, the in-phase to anti-phase transfer (Ix to 2IzSx) via analytically derived relaxation

optimized pulse sequence elements (ROPE) [31, 32] is up to a factor of e/2 = 1.36 more efficient

than the traditional INEPT transfer. Here, we demonstrate the application of the GRAPE algorithm

to the numerical optimization of ROPE-type sequences and compare the results to the analytical

solutions.

We consider a system, consisting of two coupled heteronuclear spins 1/2, denoted I and S, with

a coupling constant of J = 194 Hz. In the spin diffusion limit only the transverse relaxation rate

k is nonzero, assuming pure dipole-dipole relaxation (without CSA/DD cross-correlation effects)

[31]. We consider the case where the transverse relaxation rate k as defined in [31] is equal to the

coupling constant, i.e. k/J=1 (Here, a thermal correction of the relaxation superoperator need not

be included if the transfer element is used as a mixing step [22]). For the transfer Iz → 2IzSz, the

initial desity operator is ρ(0) = Iz and the desired target operator: C = 2IzSz. Both spins are

assumed to be on-resonance in a doubly rotating frame. Pulse shapes consisting of N = 75 discrete

time steps were optimized for various pulse durations T , using the gradient δΦo/δuk(j) given in

Eq. (24). As in the previous example, a random initial sequence was created for each value of T by

assigning a random rf amplitudes to every tenth time point and using a cubic spline fit to interpolate

the amplitudes uk(j) of the intermediate time points.

Fig. 4 shows the transfer efficiency of the numerically optimized sequences (black circles). For

comparison, the figure also shows the analytical curve representing the theoretical limit [31] of the

transfer efficiency as a function of T . E.g., for T = 2.11 ms, (i.e. T/J−1 = 0.408), the numerically

optimized pulse sequence is shown in Fig. 5 A. This pulse shape is very close to the analytically

derived ROPE pulse [31]. It is interesting to note that the numerically optimized pulse closely

approaches the theoretical limit with a finite maximum rf amplitude. In the center of the pulse, x

and y rf amplitudes are slightly overlapping, whereas this is not the case in the analytical solution,

which has a short delay in the center of the sequence. However, the characteristic ROPE transfer

mechanism (c.f. Figs. 4 and 6 in Ref. [31]) is evident in Fig. 5 B, which shows the trajectories of
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the non-vanishing terms of the density operator under the action of the pulse shape shown in Fig. 5

A. In contrast to INEPT, a large portion of Ix is immediately transformed to Iz, which is protected

from relaxation in the present model. Consequently, Iz is brought in an optimal trajectory back

to the transverse plain in the first phase of the transfer. In the last phase, 2IySz is lifted in a an

optimal way to 2IzSz, which is again protected against relaxation [31]. Although for simplicity, CSA

relaxation was not considered in this example, it is straight-forward to include CSA relaxation as well

as the effects of cross-correlation in the relaxation matrix and to numerically optimize corresponding

pulses (data not shown) [33]. Furthermore, the algorithm is not limited to two coupled spins and

more complicated relaxation networks can be taken into account.

3.3 Time-optimal implementation of unitary transformations

This example illustrates the use of the GRAPE algorithm in the development of pulse sequences that

implement a desired unitary propagator in minimum time. We consider a chain of three heteronuclear

spins with coupling constants J12 = J23 = J , J13 = 0. In a multiple-rotating frame, in which the

three heteronuclear spins are on resonance, the free evolution Hamiltonian Ho is

Ho = 2πJI1zI2z + 2πJI2zI3z. (39)

Many applications in NMR spectroscopy [34, 35] and NMR quantum computing [36, 37, 38] require

unitary transformations of the form

Uzzz(α) = exp{−iα 4I1zI2zI3z}. (40)

We recently derived analytically the minimum time T ∗(α) to create Uzzz(α). The corresponding

pulse sequences [39, 40] are considerably shorter than conventional implementations of these unitary

propagators [34, 35, 41, 42]. For 0 ≤ α ≤ π/2, the minimum time T ∗ is given by [39, 40]

T ∗(α) =
√

α(2π − α)
πJ

(41)

and T ∗(n π ± α) = T ∗(α), where n is an arbitrary integer.

Here, we used the gradient δΦ3/δuk(j) defined in Eq. (28), where the initial unitary propagator is

the identity matrix (U(0) = 1) and the target operator is U(T ) = Uzzz(α) for six values of α between

0 and π/2 (c.f. Fig. 6). The heteronuclear couplings J were chosen to be 1 Hz and each pulse was

digitized in steps ∆t = 0.0025 s. For each time step ∆t, the x and y rf amplitudes irradiated

at spins I1 and I2 and I3 were optimized. For each value of α, random initial pulse sequences
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were numerically optimized for various pulse durations T , in order to determine the minimum T ,

for which the numerical algorithm finds a performance index of Φ3/Tr{1} = 1. In this series of

optimizations, T was incremented in steps of 0.05 s for each value of α. The shortest durations T ,

for which a numerical value of 1.0 was found for Φ3/Tr{1} are indicated by circles in Fig. 6. These

durations represent upper numerical limits for the minimum time T ∗. Fig. 7 shows the numerically

optimized pulse sequence for α = π/8 and T = 0.5 s. It is qualitatively similar to the analytically

derived sequence, which consists only of rf pulses irradiated at spin I2 [39]. The curve representing

the analytical solution of T ∗ (c.f. Eq. 41) is also shown in Fig. 6 for comparison. The asterisks

represent the longest durations T with Φ3/Tr{1} < 1.0. For α = π/40, π/16, π/8, π/4, 3π/8, and

π/2, the numerical values of Φ3/Tr{1} at the times T indicated by asterisks in Fig. 6 were 0.99995,

0.99998, 0.9987, 0.9997, 0.9985, and 0.9994, respectively.

4 Conclusions

In this paper we have presented a streamlined derivation of analytical gradients for the design

of pulse sequences in NMR spectroscopy. We applied these optimal control related algorithms to

the design of pulse shapes for problems involving transfer of coherence between coupled spins and

synthesis of unitary propagators in a network of coupled spins. Although the theory and numerical

principles are textbook material in the area of optimal control, its application to the control of

coupled spin dynamics is new and promising. It should be noted that the proposed gradient ascent

algorithms are not guaranteed to converge to a globally optimal pulse shape. All that can be said is

the proposed algorithms will converge to a stationary point of the performance function. To speed

up convergence, the algorithm can be further modified by using adaptive step sizes for updating the

control amplitudes as well as by using conjugate gradients instead of ordinary ones. Yet, all these

issues are technicalities of implementation that have not been addressed here, where we highlighted

the basic ideas. In future extensions, we plan to test these type of variations in order to speed up

algorithms. Note that variations of similar ideas have appeared in other fields of coherent control

[3, 6, 43], where iterative modifications of controls yielded improved pulse shapes. All these methods

only guarantee convergence to some critical point that does not have to be the global optimum. A

standard modification to the gradient ascent adds some noise when updating the control amplitudes

in order to avoid getting trapped in local minima.

In the work introduced here, we have not only improved upon pulse sequences, but the GRAPE al-
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gorithms have lead us to novel coherence transfer pathways. Further investigation has even triggered

anlytical solutions to optimal pulse shapes as well as optimal pulse sequences. We have also used

special instantiations of the GRAPE algorithm for designing broadband excitation pulses in uncou-

pled spin systems [11], which are examples of robust control for a range of spin system parameters,

such as chemical shift and rf amplitude. With the given gradients δΦi/δuk(j), it is also straight

forward to suppress undesired coherence transfers while simultaneously optimizing desired transfers.

For example, this can be achieved by defining the overall quality factor as a (weighted) sum of e.g.

Φ2 for the desired transfer and −Φ2 for the undesired transfer. A practical problem is the choice

of the number of time steps for the discretization of pulse shapes for a given control problem. This

is directly related to the number of pulse parameters to be optimized. The discretization should be

chosen to ensure that the condition given for Eq. (12) is approximately satisfied. In the presented

examples, the chosen number of pulse parameters was sufficiently large to achieve the previously

known theoretical performance limits, but we have not explored in detail the minimal number of

pulse sequence parameters necessary to achieve the theoretical bounds. In practice, this may be

done by increasing the number of pulse sequence parameters until convergence of the performance

index is reached. In a recent paper [44], first applications of the GRAPE algorithm to polarization

transfer in solid state NMR have been presented. This forms a further example demonstrating the

optimization of robust pulse sequences for a large range of parameters, e.g. due to the powder

average of dipolar couplings and the possibility to include a time-varying free-evolution Hamiltonian

as in magic angle sample spinning. The algorithm introduced here is expected to be a very useful

tool for developing superior pulse sequences in multiple spin systems.
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Figure Captions

Figure 1: Schematic representation of a control amplitude uk(t), consisting of N steps of duration

∆t = T/N . During each step j, the control amplitude uk(j) is constant. The vertical arrows

represent gradients δΦo
δuk(j) , indicating how each amplitude uk(j) should be modified in the next

iteration in order to improve the performance function Φo.

Figure 2: For the coherence order-selective coherence transfer S− → I− in a system consisting of

two heteronuclear spins 1/2, the numerically optimized transfer efficiencies η(T ) (circles) and the

analytically derive time-optimal transfer efficiency (solid line) [24, 25] are shown.

Figure 3: Example of a numerically optimized pulse shape for coherence order-selective coherence

transfer I− → S− found by the GRAPE algorithm for a given total transfer time of T = 1/(2J)

(c.f. Fig. 2). Panel A shows the x amplitude (solid curve) and y amplitude (dashed curve) of the rf

field irradiated at spin I and panel B shows the x amplitude (solid curve) and y amplitude (dashed

curve) of the rf field irradiated at spin S.

Figure 4: The efficiency η of the transfer from Iz to 2IzSz in the presence of dipole-dipole relaxation

in the spin diffusion limit as a function of the sequence duration T (details, see text). The circles

show the efficiencies of five numerically optimized sequences of different durations T and the curve

represents the theoretical limit [31].

Figure 5: Example of a numerically optimized pulse sequence (A) of duration T = 0.408J−1 for

the transfer of Iz to 2IzSz in the presence of dipole-dipole relaxation (c.f. Fig. 4). νx and νy

correspond to the x (solid curve) and y (dashed curve) rf amplitude irradiated at spin I. Panel

(B) shows the corresponding trajectories of the non-vanishing density operator terms during the

relaxation-optimized pulse sequence.

Figure 6: The solid curve shows the analytical solution of the minimum time T ∗(α) [39] for the

creation of a propagator Uzzz(α) = exp{−iα 4I1zI2zI3z} in a spin system consisting of three het-

eronuclear spins with couplings J12 = J23 = J and J13 = 0. For six values of α, pulse sequences with

various durations T were optimized using the gradient δΦ3/δuk(j) (c.f. Eq. 28) in steps ∆T=0.05

J−1. For each α, the largest value of T , for which the optimized numerical value Φ3/Tr{1} was

found to be smaller than 1.0 is indicated by an asterisk. The shortest value of T , for which the

optimized numerical value Φ3/Tr{1} was found to be 1.0 is indicated by a circle.
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Figure 7: Example of a numerically optimized pulse sequence for the creation of the propagator

Uzzz(α) corresponding to the data point represented by a circle at α = π/8 in Fig. 6. The x and y

amplitudes of the rf pulse irradiated at spin I2 are shown. In comparison, the numerically optimized

rf amplitudes irradiated at spins I1 and I3 are less than 0.5 % at each point during the sequence

(data not shown) and can be neglected.
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