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Abstract

In spite of great advances in the theory and applications of magnetic resonance in the past 50 years,

some very basic questions in spin physics have not yet been answered. In the absence of relaxation

losses, what is the maximum amount of coherence that can be transfered between coupled spins under

general coupling tensors in a given time and how can this be realized experimentally? Since transfer

of coherence between spins forms the basis for multidimensional experiments in NMR spectroscopy,

the answers to these questions are of both practical and theoretical interest. Computing the physical

limits of coherence transfer involves characterizing unitary evolutions that can be synthesized in a

given time. Here we derive these limits and show how they can be achieved experimentally.
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1 Introduction

Computing how close a quantum mechanical system can be driven from a given initial state to a

desired target state in a specified amount of time is an important practical problem. This problem

arises in the areas of coherent spectroscopy and control of quantum systems where one actively

manipulates quantum dynamics through electromagnetic fields of appropriate frequencies. However

in most applications, external controls alone are not sufficient to bring the system to a desired

target state. The evolution under the internal Hamiltonian is essential to move between quantum

mechanical states of interest. For example, in NMR spectroscopy, appropriate combinations of

external excitation through radio-frquency (rf) pulses and evolution under couplings between nuclear

spins is used to steer a spin system to a target state, e.g. to transfer coherence from one spin to

another. The necessity of having the spin system evolve under its internal Hamiltoian puts physical

limits on the minimum time it takes to transfer coherence between coupled spins and on the maximum

coherence that can be transferred in a specidied time.

Until now the limits of coherence transfer between coupled spins in a specified time were un-

known. In this paper, we solve this problem for general coupling tensors and find the optimal pulse

sequence for achieving the optimal coherence transfer. Computing such bounds and the optimal pulse

sequences involves explicit characterization of the set of unitary propagators that can be synthesized

in a given time. In our recent work on time-optimal control of spin systems [1, 2], we presented an

explicit characterization of all the unitary transformations that can be produced in a coupled spin

system in a specified time. Here we use these methods to compute the maximum coherence transfer

efficiency between coupled spins in a specified time. We also provide experimental data which shows

how these methods can be used to improve sensitivity of current NMR experiments when the time

for coherent evolution is restricted. Finally we discuss how these methods might be generalized to

larger spin systems and other applications involving control of quantum dynamics.

2 Theory

We consider a pair of coupled spins, where the coupling Hamiltonian Hc has the form

Hc = 2πC(µ1IxSx + µ2IySy + µ3IzSz), (1)

where in the following we assume |µ3| ≥ |µ2| ≥ |µ1|.
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Note that the above form of the coupling Hamiltonian is completely general as any coupling term

of the form

Hc =
∑
α,β

CαβIαSβ = I C S

with the general coupling tensor

C =



Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz




with arbitrary real elements Cij can be transformed to the form given in Eq. 1 by local unitary

transformations on the two spins [2]. To see this, observe that by singular value decomposition C

can be written as

C = Θ1




µ1 0 0
0 µ2 0
0 0 µ3


Θ2,

where Θ1 and Θ2 are three-dimensional rotations. By local unitary transformations we can transform

the coupling tensor C → UCV where U, V are three dimensional rotations with positive determinant,

reflecting rotations on spin I and S respectively. Therefore U and V can be chosen so that

UCV = ±




µ1 0 0
0 µ2 0
0 0 µ3


 .

We assume that the two spins under consideration can be selectively manipulated at rates faster than

the coupling evolution, which is always possible if the frequency difference between the spins which is

much larger than the strength of coupling Hamiltonian. This allows us to produce any local unitary

transformation in a time during which there is negligible evolution under the coupling Hamiltonian.

Under these assumptions, we can completely characterize all the unitary transformations that can be

achieved in time t. The results derived in this paper use the following theorem which characterizes

the unitary transformations that can be achieved in any given time t [1, 2].

Theorem 1:[2] Given the coupling Hamiltonian Hc = 2πC(µ1IxSx +µ2IySy +µ3IzSz) for a two

spin system, all unitary transformations that can be synthesized in time t have the form

U(t) = K1A(t)K2, (2)

where A(t) denotes the nonlocal unitary transformation exp{−i2πCt(αIxSx + βIySy + γIzSz)}.

Here the vector (α, β, γ) lies in the convex cone generated by vectors (µ1, µ2, µ3), (µ1,−µ2,−µ3),

(−µ1,−µ2, µ3), (−µ1, µ2,−µ3) and their various permutations (e.g. (µ1, µ3, µ2) is a permutation

of (µ1, µ2, µ3)). K1 and K2 are local unitary transformations. A vector x belongs to the cone of

vectors {yi} if x =
∑

i αiyi, where αi ≥ 0 and
∑

i αi ≤ 1.
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It is straightforward to see that any unitary transformation in Eq. (2) can be achieved in time t.

Starting from the Hamiltonian of the form µ1IxSx+µ2IySy+µ3IzSz, by double 90◦y rotations on both

spins, we can prepare the effective Hamiltonian µ3IxSx+µ2IySy+µ1IzSz. Similarly, by selective 180◦x

rotations on one of the spins, we can also prepare the effective Hamiltonian µ1IxSx−µ2IySy−µ3IzSz.

Now it is clear that by a series of such double and selective rotations any Hamiltonian of the

form pIxSx + qIySy + rIzSz where (p, q, r) is one of (µ1, µ2, µ3), (µ1,−µ2,−µ3), (−µ1,−µ2, µ3),

(−µ1, µ2,−µ3) or their permutations can be synthesized. Since all these Hamiltonians commute,

we can, by concatenation of evolution under these transformed Hamiltonians, synthesize an average

Hamiltonian αIxSx + βIySy + γIzSz, where (α, β, γ) lies in the specified convex cone. Since local

unitary transformations are assumed to take neglible time to produce, it is now clear that any U as

defined in Eq. (2) can be synthesized. Using some important convexity results in matrix analysis,

it can be shown that these are the only unitary evolutions that can be synthesize in time t [2].

Table 1: Maximum transfer efficiency η∗(t) and minimum time tmin for complete transfer

Transfer η∗(t) t−1
min

Ix → Sx sin2(π
2C(|µ3| + |µ2|)t) C(|µ3| + |µ2|)

I− → S− sin(πCa) sin(πCb) 2
3C(|µ3| + |µ2| + |µ1|)

Ix → 2IzSx sin(πC|µ3|t) 2C|µ3|

I− → 2IzS
− maxx sin(π

2C{|µ3| + |µ2| − |µ1| + x}t) cos(πCtx) C(|µ3| + |µ2| − |µ1|)

IxSβ → IβSx sin(π
2C(|µ3| + |µ2|)t) C(|µ3| + |µ2|)

I−Sβ → IβS
− sin(π

2C(|µ3| + |µ2|)t) C(|µ3| + |µ2|)

Note: I− = Ix − iIy and Iβ = 1
2

− Iz. For the transfer I− → S−, the optimal values of a and b are

completely characterized by the two conditions a+2b = (|µ3|+ |µ2|+ |µ1|) t and tan(πCa) = 2 tan(πCb).
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We now use this result to compute the maximum coherence that can be transferred between

coupled spins in a specified time t. Let the initial density operator terms of interest be ρ(0) and

denote the density operator at time t by ρ(t) = U(t)ρ(0)U(t)†. The efficiency of transfer to a target

operator F at time t is defined as [3]

η(t) =
|tr(F †ρ(t))|
‖F‖ ‖ρ(0)‖ . (3)

Result 1: Given the coupling Hamiltonian Hc = 2πC(µ1IxSx+µ2IySy +µ3IzSz), the maximum

efficiency η∗(t) of the coherence transfer in time t and the minimum time tmin for complete transfer

for important experiments are summarized in Table 1.

The plot of the maximum achievable efficiency η∗ versus the mixing time t also gives us the

minimum time it takes to achieve a desired coherence transfer efficiency. We will refer to this plot

as TOP (time-optimal pulse) curve. In Table 1, complete characterizations of TOP curves η∗(t) are

given for widely used coherence transfer elements, such as Cartesian in-phase to in-phase transfer

(Ix → Sx) as in refocussed INEPT [4], coherence-order-selective in-phase to in-phase transfer (I− →

S−) as in sensitivitiy enhanced ICOS-CT experiments [5], Cartesian in-phase to antiphase transfer

(Ix → 2IzSx) as in standard INEPT [6], coherence-order-selective in-phase to antiphase transfer

(I− → 2IzS
−) as in sensitivity enhanced COS-CT [7], and line-selective to line-selective transfer

IxSβ → IβSx and I−Sβ → IβS
− as in TROSY [8, 9]. Note that by fast local unitary transformations

Ix can be rapidly flipped to Iy or Iz, I− = Ix − iIy can be transformed to I+ = Ix + iIy, and

Iβ = 1
2 −Iz can be transformed to Iα = 1

2 +Iz and vice versa. Hence, each of the specific transfers

stated in Table represents a whole class of locally equivalent transfers with the same TOP curves

η∗(t) and the same minimum time tmin to achieve complete transfer.

Examples of TOP curves are presented in Fig. 1 for four characteristic coupling tensors. Fig. 1 A

corresponds to the case of longitudinal, Ising-type coupling with (µ1, µ2, µ3) = (0, 0, 1), which is char-

acteristic for heteronuclear experiments [10, 11]. Fig. 1 B shows the cae of planar coupling [12], also

known as XY model [13] with (µ1, µ2, µ3) = (0, 1, 1). Fig. 1 C represents the generic case of homonu-

clear J coupling in isotropic solutions, also known as Heisenberg coupling with (µ1, µ2, µ3) = (1, 1, 1).

Finally, Fig. 1 D corresponds to the case of dipolar coupling with (µ1, µ2, µ3) = (−0.5,−0.5, 1), which

is the dominant homonuclear coupling term in solid state NMR and also important in anisotripic

solutions [14]. For example, in the case of the Cartesian transfer Ix → Sx under dipolar coupling (red

TOP curve in Fig. 1 D), the minimum time to achieve full transfer is 2/(3 C)=0.66/C. In contrast,
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conventional pulse sequences [4, 15] based solely on non-selective rf pulses require a 50% longer trans-

fer time t. From Table 1 it is follows that tmin(Ix → Sx) = tmin(IxSβ → IβSx) = tmin(I−Sβ → IβS
−)

and

tmin(Ix → 2IzSx) ≤ tmin(Ix → Sx) ≤ tmin(I− → 2IzS
−) ≤ tmin(I− → S−)

if |µ2| + |µ3| ≥ 5|µ1| (c.f. Fig. 1 A, B), else (c.f. Fig. 1 C, D)

tmin(Ix → 2IzSx) ≤ tmin(Ix → Sx) ≤ tmin(I− → S−) ≤ tmin(I− → 2IzS
−).
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Figure 1: Graphical representations of the TOP (time-optimal pulse) curves η∗(t) for characteristic
coherence transfers under (A) longitudinal (Ising) coupling with (µ1, µ2, µ3) = (0, 0, 1), (B) planar
coupling with (µ1, µ2, µ3) = (0, 1, 1), (C) isotropic (Heisenberg) coupling with (µ1, µ2, µ3) = (1, 1, 1),
and (D) dipolar coupling with (µ1, µ2, µ3) = (−0.5,−0.5, 1). The curves represent the transfers
Ix → Sx (red), I− → S− (orange), Ix → 2IzSx (dark blue), I− → 2IzS

− (light blue), IxSβ → IβSx

and I−Sβ → IβS
− (green). Dark blue curves are overlapping with green curves in (A), (B), and

(C), and with the light blue curve in (B). The dotted vertical lines indicate the minimum time tmin

to achieve full transfers.

In Fig. 1 C and D, the characteristic shape of the light blue TOP curves for the transfer

I− → 2IzS
− results from the need to refocus the IzSz part of the coupling term, for details see

supporting methods. Schematic representation of time optimal pulse sequences achieving the transfer

limits are shown in Fig. 2.
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The proof of the optimal transfer efficiencies η∗(t) and minimum times tmin summarized in Table

1 uses the characterization of all the unitary transformations that can be achieved in a given time

t as characterized in Eq. (2), for details see supporting methods. Here, we illustrate the basic ideas

involved in proving the above relations by considering the first example (Ix → Sx). For this case,

Eq. (3) reduces to

η(t) = |tr{SxU(t)IxU
†(t)}| (4)

as ‖Ix‖ = ‖Sx‖ = 1. We need to find the unitary propagator U(t) that maximizes η(t). As explained

before, it takes negligible time to synthesize the local unitary transformations K1 and K2 in Eq. (2).

Let K2IxK
†
2 = m1Ix + m2Iy + m3Iz and K†

1SxK1 = n1Sx + n2Sy + n3Sz, where
∑

i m
2
i = 1 and
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Figure 2: Schematic representation of time optimal pulse (TOP) sequences achieving the physical
limit of transfer efficiency η∗(t) in a given time t for the transfers Ix → Sx (A, A′), I− → S− (B,
B′), Ix → 2IzSx (C, C′), I− → 2IzS

− (D, D′), IxSβ → IβSx and I−Sβ → IβS
− (E, E′). Panels A-E

show the sequence of effective coupling Hamiltonians to be created during the sequence, where the
tripple in each box represents the prefactors of the bilinear coupling terms 2πCIxSx, 2πCIySy, and
2πCIzSz in a toggling frame, respectively. For simplicity, here it is assumed that the initial coupling
Hamiltonian Hc can be transformed by selective 180◦ rotations on the spins to +2πC(|µ1|IxSx +
|µ2|IySy + |µ3|IzSz). Panels A′-E′ show schematic pulse sequences, where the gray boxes represent
pulse sequence elements creating the effective Hamitonian 2πC(|µ1|IxSx + |µ2|IySy + |µ3|IzSz) (or
−2πC(|µ1|IxSx + |µ2|IySy + |µ3|IzSz)). The optimal durations t1, t2, and t3 in B′ and of t1 and t2
in D′ are specified in the supplementary methods. Narrow and wide bars represent 90◦ and 180◦

pulses, respectively. Solid bars represent nonselective pulses and open bars represent spin-selective
pulses.
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∑
j n

2
j = 1. Eq. (4) then can be written as

η(t) = m1n1 sin(πCβt) sin(πCγt) + m2n2 sin(πCαt) sin(πCγt) + m3n3 sin(πCαt) sin(πCβt), (5)

where (α, β, γ) lies in the convex cone generated by vectors (µ1, µ2, µ3), (µ1,−µ2,−µ3), (−µ1,−µ2, µ3),

(−µ1, µ2,−µ3) and their various permutations. If β + γ is fixed then sin(πCβt) sin(πCγt) achieves

it maximum value at β = γ. Given the restrictions on (α, β, γ) as described above, this maximum

value is achieved when β + γ = |µ2|+ |µ3| and the maximum value is sin2(π
2C(|µ3|+ |µ2|)t) (c.f. red

curves in Fig. 1). Therefore Eq. (5) is maximized for m1 = n1 = 1 and for β = γ = 1
2 (|µ3| + |µ2|).

Thus the largest value of Eq. (5) is 1 and is achieved at tmin = {C(|µ3| + |µ2|)}−1. The ini-

tial coupling Hailtonain Hc can be transformed by selective 180◦ rotations on the spins to either

2πC(|µ1|IxSx + |µ2|IySy + |µ3|IzSz) or −2πC(|µ1|IxSx + |µ2|IySy + |µ3|IzSz). The maximum effi-

ciency can be achieved by evolution under the Hamiltonian ±2πC(|µ1|IxSx+ |µ2|IySy + |µ3|IzSz) for

a duration t
2 followed by evolution under ±2πC(|µ1|IxSx + |µ3|IySy + |µ2|IzSz) for another period

t
2 , as depicted in Fig. 2 A, A′.

3 Experimental

For practical NMR applications, the required selective manipulations of spins are most straigtforward

to implement in heteronuclear spin systems, which implies the weak coupling (Ising coupling). For

homonuclear spin systems with general coupling tensors, rapid selective manipulation of spins is

possible if the resonance frequencies of the spins of interest are well separated. The physical limits of

coherence transfer efficiency in a given time will motivate the development of pulse sequence elements

(represented by boxes in Fig. 2 A′-E′) for suppressing chemical shifts for given frequency ranges

of practical interest to approach an effective coupling Hamiltonian of the form ±2πC(|µ1|IxSx +

|µ3|IySy + |µ2|IzSz), as required by the time-optimal pulse sequences (c.f. gray boxes in Fig. 2

A′-E′).

In order to experimentally demonstrate an example of a nontrivial optimal coherence transfer

sequence, we implemented the transfer I− → S− for an effective Hamiltonian of the form given in

Eq. (1) with C = 10.8 Hz and (µ1, µ2, µ3) = (0.03, 0.88, 0.88). Spins I and S were represented by

the H5 and H6 proton spins of cytosine in an anisotropic solvent consisting of filamentous Pf1 phage

in 90% H2O and 10% D2O [15, 16]. The phage concentration was adjusted such that the residual

dipolar coupling constant D between I and S was the negative of the scalar coupling constant J =
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7.2 Hz. At a magnetic field of 14.1 Tesla, the transmitter frequency was set in the center of the

two resonances, resulting in offset frequencies νI = 459 Hz and νS = −459 Hz with a free evolution

Hamiltonian of the form

H = 2πνI (Ix − Sx) + 2πC (IySy + IzSz)

with C = J−D/2 = 10.8 Hz, where we have labeled the axes such that the convention |µ3| ≥ |µ2| ≥

|µ1| is fulfilled (c.f. Eq. 1). In order to eliminate the offset terms, we used a modified Carr-Purcel

sequence [17, 18, 19] with a rf amplitude −γB1/(2π) of 31.2 kHz and delays ∆ of 264 µs which

results in an effective Hamiltonian

Heff = 2πC (0.03 IxSx + 0.88 IySy + 0.88 IzSz).

Given this effective Hamiltonian, the optimal pulse sequence for the transfer I− → S− was im-

plemented. According to Table 1, the minimum time to achieve full transfer (η = 1) is given by

tmin = 3{2C(|µ3| + |µ2| + |µ1|)}−1 = 77.6 ms and for a given total transfer time t ≤ tmin, the

maximum possible transfer efficiency η∗(t) is given by

η∗(t) = sin(πCa) sin(πCb) (6)

(c.f. solid curve in Fig. 3A) with (a+2b)/t = |µ3|+ |µ2|+ |µ1| = 1.79 and tan(πCa) = 2 tan(πCb).

In the general case where µ1 �= µ2 �= µ3, the optimal sequence of toggling frame Hamiltonians

shown in Fig. 2 B consists of six periods which can be realized by the pulse sequence given in

Fig. 2 B′. In the present case where µ2 = µ3, the general sequence of toggling frame Hamiltoni-

ans reduces to only three distinct periods with ±2πC(|µ1|IxSx + |µ2|IySy + |µ3|IzSz) for time t1,

±2πC(|µ3|IxSx + |µ1|IySy + |µ2|IzSz) for time t2, and ±2πC(|µ2|IxSx + |µ3|IySy + |µ1|IzSz) for time

t3. The corresponding pulse sequence can be simplified to t1 - (90◦z) - t2 - (90◦−z90◦y) - t3 - (90◦−y).

(Note that due to the definition of the frame of reference, such that |µ3| ≥ |µ2| ≥ |µ1| c.f. Eq. 1),

the 90◦y and 90◦z pulses correspond to 90◦x and 90◦y pulses in the usual rotating frame of reference.)

For any total time t ≤ tmin, the optimal durations t1 = t2 and t3 are determined uniquely by the

conditions t1 + t2 + t3 = t and tan(πCa) = 2 tan(πCb), where a = (|µ2| + |µ3|)t2 + |µ1|t3 and

b = |µ1|t1 + (|µ2| + |µ3|)(t2 + t3)/2 (c.f. solid curves in Fig. 3 B and supporting methods).

In order to record experimental transfer efficiecy curves η(t) for the transfer I− → S− in the

rotating frame, the intial density operator ρ◦ = Ix was prepared by selectively saturating spin S and

by applying a hard 90◦y pulse to the thermal equilibrium spin I polarization. The solvent signal (H2O)

was suppressed by a combination of presaturation and pulsed field gradients. Before application of
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the transfer sequence, Ix was dephased by a pulsed field gradient. After the actual coherence

transfer step, a refocussing gradient of opposite sign was applied and the free induction decay was

recorded. As only −1 quantum coherence is detected by the standard quadrature detection scheme,

the integrated intensity of the S resonance corresponds to the experimental transfer amplitude for

I− → S−. Fig. 3 A shows the theoretical (solid line) and experimental (solid circles) transfer

efficiency of the optimal pulse sequence as a function of t. For comparison, the dotted curve and

open circles shows the theoretical and experimental transfer efficiency

ηIM (t) = sin2(πC{|µ1| + |µ2| + |µ3|}t/3)

of an isotropic mixing sequence with t1 = t2 = t3 = t/3 [5, 20, 21, 22]. In the limit of short transfer

times, the optimal mixing sequence provides a gain of more than 11% compared to isotropic mixing.

As the transfer time t is nearing tmin, the optimal transfer sequence approaches the isotropic mixing

sequence with ti = t/3 (c.f. Fig. 3 B).

4 Conclusion

If no constraint is placed on the mixing time, the maximum achievable efficiency and pulse designs

for the transfers considered in this paper are well known [3, 23, 24]. However, we for the first time

derive physical limits on the efficiency of coherence transfer between coupled spins 1/2 under general

coupling tensors for arbitrary mixing times t. Furthermore, we give explicit shortest pulse sequences

which achieve this maximum efficiency. The solution of this problem, besides being of fundamental

interest in magnetic resonance, gives the best experimental designs for multidimensional NMR exper-

iments where mixing times have to be curtailed due to relaxation losses. It is important to note that

we have made no attempts in this paper to exploit the structure of relaxation. In our recent work,

we have shown that in the presence of differential relaxation rates, it is possible to increase coher-

ence transfer efficiency over one obtained by just reducing the mixing time [25, 26, 27]. However, in

many practical applications, no differential relaxation exists or limited information about relaxation

is available. With the development of new methods which give unitary bounds on coherence transfer

efficiencies in multiple spin topologies [3, 23], it is of interest to extend the results of this paper to

compute the minimum time and the corresponding pulse sequences to achieve these bounds in larger

spin systems. For example, these include general InS spin systems (e.g. methylene or methyl groups
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Figure 3: (A) Comparison of transfer efficiencies η(T ) for the in-phase coherence-order selective
coherence transfer I− → S−. Solid curve and black circles correspond to the theoretical (c.f. Eq.
6) and experimental transfer efficiency of the optimal pulse sequence for a non-isotropic effective
Hamiltonian of the form Heff = 2π 10.8 Hz (0.03 IxSx + 0.88 IySy + 0.88 IzSz) as a function of the
total transfer time t. The dottet curve and open circles represent the case of isotropic mixing. In
order to take into account small experimental relaxation losses, the theoretical curves were multiplied
by an exponential damping function exp{−t/Td} with Td = 1.06 s. (B) Optimal durations t1, t2,
and t3 (solid curves) and the durations t1 = t2 = t3 = t/3 of an isotropic mixing sequence. The
black dots correspond to actual mixing periods ti used in the experiments, where the time resolution
was limited to multiples of 1.12 ms, corresponding to a single XY-4 cycle [17], i.e. one fourth of
complete a complete XY-16 cycle [18].

in side chains of proteins) and chains of coupled heteronuclear or homonuclear spins (e.g. in protein

backbone or side chain experiments). The techniques presented in this paper for computing limits

of coherence transfer efficiency by first characterizing the set of unitary transformations that can

be synthesized in a specified time forms a systematic methodoloy for approaching these problems.

Furthermore, such a characterization of unitary evolutions is of great significance in the general area

of quantum information processing. This allows to address problems like characterizing the difficulty

of generating a desired state in coupled spin topologies or finding the minimum time to transfer an

unknown state completely between two coupled spins under a given coupling tensor.
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Supporting Information

1. First we consider the transfer

Ix → 2IzSx.

Observe the efficiency of this transfer is the same as that of the transfer Ix → 2IySz, as a local

rotation on spin I and S is sufficient to go between the operators 2IySz and 2IzSx. This local

transformation is assumed to take negligible time. We now compute the unitary evolution U(t)

that maximizes |tr( 2IySz U(t)IxU
†(t))|. Based on the characterization of U(t) = K1A(t)K2

as in equation (2), consider the case when K2 is identity. In this case

A(t)IxA
†(t) = sin(πCγt) cos(πCβt) 2IySz + sin(πCγt) sin(πCβt) Sx

The maximum projecion of K1A(t)IxA
†(t)K†

1 onto 2IySz is then sin(πCγt) cos(πCβt) and is

achieved when K1 is an identity transformation. This value sin(πCγt) cos(πCβt) is maximized

for β = 0 and γt as large as possible (as long as γt ≤ 1
2πC ). From (2), the vector (α, β, γ) lies in

the convex cone generated by vectors (µ1, µ2, µ3), (µ1,−µ2,−µ3), (−µ1,−µ2, µ3), (−µ1, µ2,−µ3)

and their various permutations. Under these constraints the optimal values of γ and β are |µ3|

and 0 respectively. The maximum efficiency is sin(πC|µ3|t). For the local unitary transforma-

tion K2 other than identity K2IxK
†
2 = m1Ix +m2Iy +m3Iz, where

∑
i m

2
i = 1. Each of these

single spin operators have the maximum transfer efficiency of sin(πC|µ3|t) to the target state

2IySz by choice of suitable A(t) and K1 as described above. There is no gain by having K2 other

than identity and so we achieve the maximum efficiency when K2 = 1. The maximum efficiency

can be achieved by evolution under the Hamiltonian ±2πC(|µ1|IxSx + |µ2|IySy + |µ3|IzSz)

for t
2 amount of time followed by evolution under ±2πC(−|µ1|IxSx − |µ2|IySy + |µ3|IzSz) for

another t
2 as depicted in Figure.

2. Now we consider the trasfer

I− → S−.

To derive the optimal efficiency for this transfer, we state two lemmas that we will use in the

course of the proof.

Lemma 1 Let p =




1
−i
0


,

Σ =




a1 0 0
0 a2 0
0 0 a3


 ,
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ai ≥ 0 and U, V , three dimensional rotation matrices. The maximum value of ‖p†UΣV p‖ is

the sum of the largest two entries of ai.

Proof: Let

Λ =




√
a1 0 0
0

√
a2 0

0 0
√
a3


 .

By definition Σ = Λ†Λ. Using Cauchy Schwartz inequality ‖p†UΣV p‖ ≤ ‖ΛV p‖ ‖ΛUp‖.

Observe, the maximum value of ‖ΛV p‖ is
√
ak + al, where ak and al are the two largest

diagonal entries of Σ. Therefore ‖p†UΣV p‖ ≤ ak + al. For appropriate choice of U and V ,

this upper bound is achieved (For example, in case a1 ≥ a2 ≥ a3, the bound is achieved for U

and V identity). Q.E.D.

Lemma 2 Consider the function f(γ, β, α) = sin(Cπγt) sin(Cπβt) + sin(Cπγt) sin(Cπαt),

where γ, β, α ≥ 0. For a fixed value of γ + β + α, the maximum value of f(γ, β, α) is

2 sin(Cπa) sin(Cπb), where a + 2b = (α + β + γ)t and tan(Cπa) = 2 tan(Cπb). The maxi-

mum is achieved when α = β.

This is a constrained optimization problem, which can be solved by introducing the Lagrange

multiplier λ and maximizing

sin(Cπγt) sin(Cπβt) + sin(Cπγt) sin(Cπαt) + λ(γ + β + α).

The computations are straightforward and have been ommitted.

We now seek to maximize the expression ‖tr(S+U(t)I−U†(t))‖. Let s denote the subspace

spanned by the orthonormal basis {Sx, Sy, Sz} and i denote the subspace spanned by the

orthonormal basis {Ix, Iy, Iz}. We represent the starting operator 1√
2
(Ix − iIy) as a column

vector p = 1√
2
[1 − i 0]T in i. The action I−1 → K1I

−1K†
1 can then be represented as p → V p

where V is an orthogonal matrix. Similarly the operator S+ = (Sx+iSy)√
2

is represented as a

column vector 1√
2
[1 i 0]T in s. Using the charactrization of U(t) = K1A(t)K2 in equation 2,

we observe that ‖tr(S+U(t)I−U†(t))‖ can be written as ‖p†UΣV p‖, where U and V are real

orthogonal matrices and

Σ =




sin(Cπγt) sin(Cπβt) 0 0
0 sin(Cπγt) sin(Cπαt) 0
0 0 sin(Cπαt) sin(Cπβt)


 ,

where α+β+γ = (|µ1|+ |µ2|+ |µ3|)t. Now using Lemma 1 and 2 we obtain that the maximum

efficiency is given by sin(πCm) sin(πCn) where m+2n = (|µ1|+ |µ2|+ |µ3|)t and tan(πCm)
tan(πCn) = 2.
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In practice we can achieve this efficiency by evolving the Hamiltonian ±2πC(|µ1|IxSx +

|µ2|IySy+|µ3|IzSz), followed by the Hamiltonian ±2πC(|µ1|IxSx+|µ3|IySy+|µ2|IzSz) each for

time t1/2. This is followed by evolution of Hamiltonians ±2πC(|µ3|IxSx+|µ1|IySy +|µ2|IzSz),

±2πC(|µ2|IxSx + |µ1|IySy + |µ3|IzSz), each of duration t2/2, followed by ±2πC(|µ2|IxSx +

|µ3|IySy + |µ1|IzSz), ±2πC(|µ3|IxSx + |µ2|IySy + |µ1|IzSz), each of duration t3/2. Ob-

serve that t1 + t2 + t3 = t and for the optimal sequence t1 = t2 and tan(πCm)
tan(πCn) = 2, where

m = (|µ2| + |µ3|)t2 + |µ1|t1 and n = (|µ2| + |µ3|)(t2 + t3)/2 + |µ1|t1. These three relations

determine t1, t2, and t3 uniquely.

3. Next, we consider the transfer
√

2IxSα →
√

2IαSx.

Using the characterization of the local unitaries as described in equation (2). Consider the

action of A(t) in equation (2) on the operator
√

2IxSα. Let s denote the subspace spanned by

the orthonormal basis {
√

2IαSx,
√

2IαSy,
√

2IαSz} and let Ps denote the projection onto this

space. Then we obtain

Ps(A(t)
√

2IxSα A†(t)) =
sin(πCtα) + sin(πCtβ)

2
.

Note |Ps(A IxSα A†)| is all we need to maximize, as then by a suitable local unitary K1, we

can rotate this projection onto IαSx. Maximizing the above expression then gives α = β =
|µ3|+|µ2|

2 . In practice we can achieve this efficiency by evolving the Hamiltonian ±2πC(|µ3|IxSx+

|µ2|IySy + |µ1|IzSz) for t
2 amount of time followed by the evolution of the Hamiltonian

±2πC(|µ2|IxSx + |µ3|IySy + |µ1|IzSz) for time t
2 . Note, we have in the above discussion

taken K2 as identity transformation. In general if K2 is not zero, starting from the initial

operator IxSα, it will create
∑

pq mpnqIp.(12 − Sq), where
∑

p m
2
p = 1 and

∑
q n

2
q = 1. Since

each of the terms Ip.(12 − Sq), the maximum transfer efficiency to the subspace s is bounded

by sin(π
2Ct(|µ2|+ |µ3|)), the total maximum efficiency is achieved for K2 an identity transfor-

mation.

4. The maximal efficiency for the transfer

I±Sα → IαS
±.

is the same and can be derived as above.

5. Finally we consider the transfer
I±√

2
→

√
2IzS

±.
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Consider the action of A(t) in equation (2) on the operator I+. We obtain that

A(t)I+A†(t) = +i cos(πCtγ)(IzSx sin(πCtα) + iIzSy sin(πCtβ))

+ sin(πCtγ)(Sx sin(πCtβ) + iSy sin(πCtα))

Thus |tr(IzS
−AI+A†)| reduces to cos(πCtγ)

2 (sin(πCtα) + sin(πCtβ)). We would like to have

γ = 0 and α and β large but we know that (α, β, γ) lies in a convex cone as described in

Theorem 1. Under these restrictions then, cos(πCtγ)
2 (sin(πCtα) + sin(πCtβ)) is maximized for

α = β. To maximize α and β, we evolve the Hamiltonian 2πC(|µ2|IxSx + |µ3|IySy + |µ1|IzSz)

for t1
2 units of time followed by evolution of 2πC(|µ3|IxSx + |µ2|IySy + |µ1|IzSz) for another t1

2

units of time. This produces an effective Hamitonian 2πCt1(
|µ2|+|µ3|

2 (IxSx +IySy)+ |µ1|IzSz).

To reduce γ, we evolve the Hamiltonian 2πC(|µ2|IxSx − |µ1|IySy − |µ3|IzSz) followed by

2πC(−|µ1|IxSx + |µ2|IySy − |µ3|IzSz) for t2
2 units of time each. This produces an effective

Hamitonian 2πCt2(
|µ2|−|µ1|

2 (IxSx +IySy)−|µ3|IzSz). Given t1 +t2 = t, we can now substitute

the value of α, β and γ to find that cos(πCtγ) sin(πCtα) reduces to cos(πCtγ) sin(π
2Ct(|µ3|+

|µ2| − |µ1| + γ)). We can now maximize this expression for |γ| ≤ |µ3|. This is the maximum

efficiency. As before nothing is gained by having K1 and K2 other than identity transformation.

The efficiency of I−
√

2
→

√
2IzS

− is the same.
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