Doktoranden
Büchele, Yogi
M. Sc., Doktorand (Seit Dezember 2021)
(Development of new tetra-dentate NHC ligand systems for medicinal chemistry and oxidation catalysis)
Raum CRC 4008
Tel: (089) 289 54112
Email yogi.buechele@tum.de
My research focuses on the synthesis of new tetra-dentate-NHC ligand systems with modified electronic properties for medicinal chemistry and oxidation catalysis. In addition, my work includes the synthesis and characterization of several transition-metal compounds (group 10/11) bearing the newly developed NHC ligands as well as the investigation of their application in medicinal chemistry and oxidation catalysis.
Dietl, Nicole
M. Sc., Doktorandin (Seit September 2020)
(Iron-NHC Complexes in Catalysis)
Raum: CRC 4008
Tel.: (089) 289 54113
E-Mail: nicole.dietl@tum.de
Iron N-heterocyclic carbenes (NHC) complexes are known to have excellent activities in epoxidation catalysis. Due to their structural peculiarity, they can also be modified very easily resulting in different steric and electronic properties for different applications.My research focuses on enlarging the implementation of those complexes in other catalytic oxidation reactions like the CH-activation. This includes the design of a sufficient model reaction with variable conditions to evaluate a broad variety of complexes and carve out their differences.
[1] C. A. Hoefer, N. K. Dietl, G. G. Zámbó, T. P. Schlachta, R. M. Reich, F. E. Kühn, J. Organomet. Chem. 2024, 1006, 123018. DOI: 10.1016/j.jorganchem.2024.123018
Latzel, Stefan
M. Sc., Doktorand (Seit August 2024)
Raum: CRC 4006
Tel.: (089) 289 54111
E-Mail: stefan.latzel@tum.de
Macrocyclic NHC Iron Complexes in Homogeneous Catalysis
Esslinger, Carla
geb. Hoefer, M. Sc., Doktorandin (Seit November 2022)
Raum: CRC 4006
Tel.: (089) 289 54111
E-Mail: carla.esslinger@tum.de
Macrocyclic NHC Iron Complexes in Homogeneous Catalysis
In light of the growing demand of sustainable syntheses and emphasized significance of nontoxic chemicals, the use of iron in homogeneous catalysis is desirable and becoming more relevant. Advantageous is the highly variable electron configuration of complexed iron, tunable by the ligand field. N-heterocyclic carbenes (NHC) allow customized modification of the electronic and steric properties. The respective catalysts are stabilized by multidentate ligands, mimicking heme, to conveniently control the predominantly octahedral coordination sphere around the iron metal center, pivotal in catalysis. My research comprises the synthesis of macrocyclic multidentate NHC iron complexes and their application in various catalytic processes like aziridination, epoxidation and CO2 reduction. DFT calculations support the prediction and interpretation of catalytic activity.
List of Publications:
[1] T. P. Schlachta, G. G. Zámbó, M. J. Sauer, I. Rüter, C. A. Hoefer, S. Demeshko, F. Meyer, F. E. Kühn, J. Catal. 2023, 426, 234-246. DOI: 10.1016/j.jcat.2023.07.018
[2] C. A. Hoefer, N. K. Dietl, G. G. Zámbó, T. P. Schlachta, R. M. Reich, F. E. Kühn, J. Organomet. Chem. 2024, 1006, 123018. DOI: 10.1016/j.jorganchem.2024.123018
Hoffmann, Melanie
M. Sc., Doktorandin (Seit Mai 2023)
Raum: CRC 4007
Tel.: (089) 289 54112
E-Mail: melanie.e.hoffmann@tum.de
Gold N-heterocyclic carbene (NHC) complexes, recognized for their remarkable toxicity against malignant cells, are being systematically modified with targeting compounds. The goal is to craft a selective "magic bullet" for anti-cancer therapy, potentially minimizing impact on healthy tissues.
Hans-Böckler-Stiftung Promotionsstipendiatin
https://orcid.org/0009-0001-6854-0893
Mayr, Johannes
M. Sc., Doktorand (Seit Oktober 2022)
(Ruthenium based Hydrogenation Catalysis)
Raum: CRC 2010
Tel.: (089) 289 54203
E-Mail: j.mayr@tum.de
Transfer hydrogenation (TH) belongs to the most fundamental chemical reactions in biological systems and in chemical synthesis, with major application in fine chemical and pharmaceutical industries. Among the organoruthenium catalysts, which dominate the field of homogeneous TH catalysis, Ru(II) complexes with bifunctional phosphine−abnormal imidazolylidene ligands stand out due to their unmatched activity in TH of ketones as well as the reverse reaction – the Oppenauer-type oxidation. My work focuses on the investigation and further development of this catalytic system.
Qin, Shaoheng
M. Sc., Doktorand (Seit Juni 2021)
(Photochemistry)
Raum: CRC 4008
Tel.: (089) 289 54112
E-Mail: ge42quy@mytum.de
A visible light-induced intramolecular α-alkenylation which proceeded via metal-free dehydrohalogenative C(sp2)-C(sp2) coupling reaction, yielding diffferent rings. The concepts of photoinduced metal-free C(sp2)-C(sp2) coupling and the ring synthesis are, according to our knowledge of organic chemistry, highly valuable. The significance of building macrocycles is certain because it provides route to accessing functionalized materials. Strategies of building medium sized rings are rewarding concerning ring strain, therefore the project that I will be doing is to further study the substrate scope of eight membered rings formation. My research involves the synthesis, characterization and detailed mechanistic studies of the macrocycles and eight membered rings.
List of Publication:
G. Pan, S. Qin, D. Xu, F. E. Kühn, H. Guo, Org. Lett. 2021, 23, 2959–2963.
Richter, Leon
M. Sc., Doktorand (Seit August 2021)
(Medicinal Chemistry)
Raum: CRC 4007
Tel.: (089) 289 54112
E-Mail: leon.richter@tum.de
1,2,3-Triazolylidenes are very versatile ligands in transition-metal coordination chemistry due to their relatively simple preparation and modification via click chemistry. My research includes the synthesis of several transition-metal compounds with these ligands, the functionalisation with targeting ligands/vectors and the medicinal applications of the corresponding Au(I)-complexes in chemotherapy.
Cell studies are conducted within our cooperation partnerships.
Zámbó, Greta
M. Sc., Doktorandin (Seit Dezember 2020)
(Iron-NHC Complexes in Catalysis)
Raum: CRC 2010
Tel.: (089) 289 54203
E-Mail: greta.zambo@tum.de
Oxidative catalysis of hydrocarbons often traces back to expensive or toxic noble metals. Iron as the most abundant transition metal in earth’s crust is a promising candidate to replace such metals in their application due to its low price, low toxicity and environmental benignity. The unique properties of N-heterocyclic carbenes (NHC) provide a highly flexible ligand system for transition metal complexes, allowing for simple modification of steric and electronic parameters. My research focuses on the synthesis and characterization of cyclic and acyclic normal and mesoionic tetradentate NHC iron complexes and their application in epoxidation as well as in the challenging C–H activation catalysis.
[1] E.-M. H. J. Esslinger, J. F. Schlagintweit, G. G. Zámbó, A. M. Imhof, R. M. Reich, F. E. Kühn, Asian J. Org. Chem. 2021, 10, 2654. DOI: 10.1002/ajoc.202100487
[2] G. G. Zámbó, J. F. Schlagintweit, R. M. Reich, F. E. Kühn, Catal. Sci. Technol. 2022, 12, 4940-4961. DOI: 10.1039/D2CY00127F
[3] G. G. Zámbó, J. Mayr, M. J. Sauer, T. P. Schlachta, R. M. Reich, F. E. Kühn, Dalton Trans. 2022, 51, 13591-13595. DOI: 10.1039/D2DT02561B
[4] T. P. Schlachta, G. G. Zámbó, M. J. Sauer, I. Rüter, C. A. Hoefer, S. Demeshko, F. Meyer, F. E. Kühn, J. Catal. 2023, 426, 234-246. DOI: 10.1016/j.jcat.2023.07.018