Publications of the Cokoja Team

2022

[32]

Enhanced catalytic performance of palladium nanoparticles in MOFs by channel engineering

Z. Fan, L. Staiger, K. Hemmer, Z. Wang, W. Wang, Q. Xie, L. Zhang, A. Urstoeger, M. Schuster, J. A. Lercher, M. Cokoja, R. A. Fischer

Cell Rep. Phys. Sci. 20223, 100757.

2021

[31]

Nanometallurgy in solution: organometallic synthesis of intermetallic Pd–Ga colloids and their activity in semi-hydrogenation catalysis

L. Staiger, T. Kratky, S. Günther, A. Urstoeger, M. Schuster, O. Tomanek, R. Zbořil, R. W. Fischer, R. A. Fischer, M. Cokoja

Nanoscale 2021, 13(35), 15038–15047.

[30]

Kinetics of Epoxidation of Cyclooctene with Ionic Liquids Containing Tungstate as Micellar Catalyst

B. Zehner, W. Korth, F. Schmidt, M. Cokoja, A. Jess

Chem. Eng. Technol. 2021, 44(12), 2374–2381.

[29]

Activation of hydrogen peroxide by the nitrate anion in micellar media

F. Schmidt, B. Zehner, M. Kaposi, M. Drees, J. Mink, W. Korth, A. Jess, M. Cokoja

Green Chem. 2021, 23(5), 1965–1971.

[28]

Supramolecular concepts for the biphasic epoxidation of olefins using aqueous hydrogen peroxide

F. Schmidt, M. Cokoja

Green Chem. 2021, 23(2), 708–722.

[27]

Steric and Electronic Effects of Phosphane Additives on the Catalytic Performance of Colloidal Palladium Nanoparticles in the Semi‐Hydrogenation of Alkynes

L. Staiger, T. Kratky, S. Günther, O. Tomanek, R. Zbořil, R. W. Fischer, R. A. Fischer, M. Cokoja

ChemCatChem 2021, 13(1), 227–234.

2020

[26]

Ionic liquid surfactants as multitasking micellar catalysts for epoxidations in water

F. Schmidt, B. Zehner, W. Korth, A. Jess, M. Cokoja

Catal. Sci. Technol. 2020, 10(13), 4448–4457.

2019

[25]

Determination of the Critical Micelle Concentration of Imidazolium Ionic Liquids in Aqueous Hydrogen Peroxide

B. Zehner, F. Schmidt, W. Korth, M. Cokoja, A. Jess

Langmuir 2019, 35(49), 16297–16303.

[24]

Kinetic Model of Two-Phase Epoxidation with Ionic Liquids as Micellar Catalysts

J. Schäffer, B. Zehner, W. Korth, M. Cokoja, A. Jess

Chem. Eng. Technol. 2019, 42(1), 232–240.

2017

[23]

Ionic Liquids as Micellar Agents in Perrhenate-catalysed Olefin Epoxidation

J. Schäffer, M. Alber, W. Korth, M. Cokoja, A. Jess

ChemistrySelect 2017, 2(35), 11891–11898.

[22]

Deoxydehydration of vicinal diols and polyols catalyzed by pyridinium perrhenate salts

D. S. Morris, K. van Rees, M. Curcio, M. Cokoja, F. E. Kühn, F. Duarte, J. B. Love

Catal. Sci. Technol. 2017, 7(23), 5644–5649.

[21]

Reduction of carbon dioxide and organic carbonyls by hydrosilanes catalysed by the perrhenate anion

D. S. Morris, C. Weetman, J. T. C. Wennmacher, M. Cokoja, M. Drees, F. E. Kühn, J. B. Love

Catal. Sci. Technol. 2017, 7(13), 2838–2845.

[20]

High stability of thiol-protected colloidal platinum nanoparticles with reduced ligand coverages in the hydrogenation of 3-hexyne

P. Wand, E. Kratzer, U. Heiz, M. Cokoja, M. Tschurl

Catal. Commun. 2017, 100, 85–88.

[19]

N-alkyl ammonium perrhenate salts as catalysts for the epoxidation of olefins under mild conditions

M. Cokoja, R. M. Reich, F. E. Kühn

Catal. Commun. 2017, 100, 103–106.

2016

[18]

Functionalization of small platinum nanoparticles with amines and phosphines: Ligand binding modes and particle stability

P. Wand, J. D. Bartl, U. Heiz, M. Tschurl, M. Cokoja

J. Colloid Interface Sci. 2016, 478, 72–80.

[17]

Olefin Epoxidation in Aqueous Phase Using Ionic Liquid Catalysts: Influence of the Cation on the Catalyst Activity and the Solubility of the Substrate in Water

M. Cokoja, R. M. Reich, M. E. Wilhelm, M. Kaposi, J. Schäffer, D. S. Morris, C. J. Münchmeyer, M. H. Anthofer, I. I. E. Markovits, F. E. Kühn, W. A. Herrmann, A. Jess, J. B. Love

ChemSusChem 2016, 9(14), 1773–1776.

2015

[16]

Immobilisation of a molecular epoxidation catalyst on UiO-66 and -67: effect of pore size on catalyst activity and recycling

M. Kaposi, M. Cokoja, C. H. Hutterer, S. A. Hauser, T. Kaposi, F. Klappenberger, A. Pöthig, J. V. Barth, W. A. Herrmann, F. E. Kühn

Dalton Trans. 2015, 44(36), 15976–15983.

[15]

Influence of substituents on the strength of cation-anion contacts

R. M. Reich, M. Cokoja, I. E. Markovits, C. J. Münchmeyer, M. Drees, M. Kaposi, A. Pöthig, W. A. Herrmann, F. E. Kühn

Dalton Trans. 2015, 44(18), 8669–8677.

[14]

Catalytically active perrhenate based ionic liquids: A preliminary ecotoxicity and biodegradability assessment

H. B. T. Thu, M. Markiewicz, J. Thöming, R. M. Reich, V. Korinth, M. Cokoja, F. E. Kühn, S. Stolte

New J. Chem. 2015, 39(7), 5341–5346.

[13]

Synthesis of Cyclic Carbonates from Epoxides and CO2 by Using Organocatalysts

M. Cokoja, M. E. Wilhelm, M. H. Anthofer, W. A. Herrmann, F. E. Kühn

ChemSusChem 2015, 8(15), 2436–2454.

[12]

Catalytic epoxidation by perrhenate through the formation of organic-phase supramolecular ion pairs

M. Cokoja, I. I. E. Markovits, M. H. Anthofer, S. Poplata, A. Pöthig, D. S. Morris, P. A. Tasker, W. A. Herrmann, F. E. Kühn, J. B. Love

Chem. Commun. 2015, 51(16), 3399–3402.

[11]

Hydroxy-Functionalized Imidazolium Bromides as Catalysts for the Cycloaddition of CO2 and Epoxides to Cyclic Carbonates

M. H. Anthofer, M. E. Wilhelm, M. Cokoja, M. Drees, W. A. Herrmann, F. E. Kühn

ChemCatChem 2015, 7(1), 94–98.

[10]

Epoxidation of Olefins with Molecular Catalysts in Ionic Liquids

C. J. Münchmeyer, L. Graser, I. I. E. Markovits, M. Cokoja, F. E. Kühn, in: J. Dupont, L. Kollár (Eds.), Ionic Liquids (ILs) in Organometallic Catalysis

Top. Organomet. Chem. 2015, 51(2), 185–235.

2014

[9]

Efficient epoxidation of propene using molecular catalysts

I. I. E. Markovits, M. H. Anthofer, H. Kolding, M. Cokoja, A. Pöthig, A. Raba, W. A. Herrmann, R. Fehrmann, F. E. Kühn

Catal. Sci. Technol. 2014, 4(11), 3845–3849.

[8]

Niobium(V)chloride and imidazolium bromides as efficient dual catalyst system for the cycloaddition of carbon dioxide and propylene oxide

M. E. Wilhelm, M. H. Anthofer, R. M. Reich, V. D’Elia, J.-M. Basset, W. A. Herrmann, M. Cokoja, F. E. Kühn

Catal. Sci. Technol. 2014, 4(6), 1638–1643.

[7]

Cycloaddition of CO2 and epoxides catalyzed by imidazolium bromides at mild conditions: influence of the cation on catalyst activity

M. H. Anthofer, M. E. Wilhelm, M. Cokoja, I. I. E. Markovits, A. Pöthig, J. Mink, W. A. Herrmann, F. E. Kühn

Catal. Sci. Technol. 2014, 4(6), 1749–1758.

[6]

Cycloaddition of CO2 and Epoxides using Pentaerythritol and Halides as Dual Catalyst System

M. E. Wilhelm, M. H. Anthofer, M. Cokoja, I. I. E. Markovits, W. A. Herrmann, F. E. Kühn

ChemSusChem 2014, 7(5), 1357–1360.

[5]

Cleavage of C−O Bonds in Lignin Model Compounds Catalyzed by Methyldioxorhenium in Homogeneous Phase

R. G. Harms, I. I. E. Markovits, M. Drees, W. A. Herrmann, M. Cokoja, F. E. Kühn

ChemSusChem 2014, 7(2), 429–434.

[4]

Valorization of Carbon Dioxide to Organic Products with Organocatalysts

M. H. Anthofer, M. E. Wilhelm, M. Cokoja, F. E. Kühn

Transformation and Utilization of Carbon Dioxide (Series: Green Chemistry and Sustainable Technology, Eds.: B. M. Bhanage, M. Arai), Springer 2014, 3–37.

2013

[3]

Synthesis of Cyclic Carbonates from Epoxides and CO2 under Mild Conditions Using a Simple, Highly Efficient Niobium-Based Catalyst

A. Monassier, V. D’Elia, M. Cokoja, H. Dong, J. D. A. Pelletier, J.-M. Basset, F. E. Kühn

ChemCatChem 2013, 5(6), 1321–1324.

[2]

Activation of Hydrogen Peroxide by Ionic Liquids: Mechanistic Studies and Application in the Epoxidation of Olefins

I. I. E. Markovits, W. A. Eger, S. Yue, M. Cokoja, C. J. Münchmeyer, B. Zhang, M.-D. Zhou, A. Genest, J. Mink, S.-L. Zang, N. Rösch, F. E. Kühn

Chem. Eur. J. 2013, 19(19), 5972–5979.

[1]

Epoxidation of olefins with homogeneous catalysts – quo vadis?

S. A. Hauser, M. Cokoja, F. E. Kühn

Catal. Sci. Technol. 2012, 3(3), 552–561.